BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36940384)

  • 1. A pair of deep learning auto-contouring models for prostate cancer patients injected with a radio-transparent versus radiopaque hydrogel spacer.
    Wang Y; Boyd G; Zieminski S; Kamran SC; Zietman AL; Miyamoto DT; Kirk MC; Efstathiou JA
    Med Phys; 2023 Jun; 50(6):3324-3337. PubMed ID: 36940384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest.
    Roach D; Holloway LC; Jameson MG; Dowling JA; Kennedy A; Greer PB; Krawiec M; Rai R; Denham J; De Leon J; Lim K; Berry ME; White RT; Bydder SA; Tan HT; Croker JD; McGrath A; Matthews J; Smeenk RJ; Ebert MA
    J Med Imaging Radiat Oncol; 2019 Apr; 63(2):264-271. PubMed ID: 30609205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEMOSSA: Patient-specific finite element simulation of the prostate-rectum spacer placement, a predictive model for prostate cancer radiotherapy.
    Hooshangnejad H; Youssefian S; Guest JK; Ding K
    Med Phys; 2021 Jul; 48(7):3438-3452. PubMed ID: 34021606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental retraining, clinical implementation, and acceptance rate of deep learning auto-segmentation for male pelvis in a multiuser environment.
    Duan J; Vargas CE; Yu NY; Laughlin BS; Toesca DS; Keole S; Rwigema JCM; Wong WW; Schild SE; Feng X; Chen Q; Rong Y
    Med Phys; 2023 Jul; 50(7):4079-4091. PubMed ID: 37287322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric feasibility of moderately hypofractionated/dose escalated radiation therapy for localised prostate cancer with intensity-modulated proton beam therapy using simultaneous integrated boost (SIB-IMPT) and impact of hydrogel prostate-rectum spacer.
    Ahmad Khalil D; Jazmati D; Geismar D; Wulff J; Bäumer C; Kramer PH; Steinmeier T; Schulze Schleitthoff S; Plaude S; Bischoff M; Tschirdewahn S; Hadaschik B; Timmermann B
    Radiat Oncol; 2022 Apr; 17(1):64. PubMed ID: 35365170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.
    Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D
    Z Med Phys; 2023 May; ():. PubMed ID: 37263911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning.
    Palazzo G; Mangili P; Deantoni C; Fodor A; Broggi S; Castriconi R; Ubeira Gabellini MG; Del Vecchio A; Di Muzio NG; Fiorino C
    Phys Imaging Radiat Oncol; 2023 Oct; 28():100501. PubMed ID: 37920450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of CT reconstruction algorithm on auto-segmentation performance.
    Miller C; Mittelstaedt D; Black N; Klahr P; Nejad-Davarani S; Schulz H; Goshen L; Han X; Ghanem AI; Morris ED; Glide-Hurst C
    J Appl Clin Med Phys; 2019 Sep; 20(9):95-103. PubMed ID: 31538718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy.
    Elguindi S; Zelefsky MJ; Jiang J; Veeraraghavan H; Deasy JO; Hunt MA; Tyagi N
    Phys Imaging Radiat Oncol; 2019 Oct; 12():80-86. PubMed ID: 32355894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning.
    Fiorino C; Reni M; Bolognesi A; Cattaneo GM; Calandrino R
    Radiother Oncol; 1998 Jun; 47(3):285-92. PubMed ID: 9681892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy.
    Abdulkadir Y; Luximon D; Morris E; Chow P; Kishan AU; Mikaeilian A; Lamb JM
    Med Phys; 2023 Oct; 50(10):5969-5977. PubMed ID: 37646527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy.
    Motegi K; Tachibana H; Motegi A; Hotta K; Baba H; Akimoto T
    J Appl Clin Med Phys; 2019 Jan; 20(1):229-236. PubMed ID: 30592137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.