These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36940429)
1. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. Gu Y; Piñol R; Moreno-Loshuertos R; Brites CDS; Zeler J; Martínez A; Maurin-Pasturel G; Fernández-Silva P; Marco-Brualla J; Téllez P; Cases R; Belsué RN; Bonvin D; Carlos LD; Millán A ACS Nano; 2023 Apr; 17(7):6822-6832. PubMed ID: 36940429 [TBL] [Abstract][Full Text] [Related]
2. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. Piñol R; Brites CD; Bustamante R; Martínez A; Silva NJ; Murillo JL; Cases R; Carrey J; Estepa C; Sosa C; Palacio F; Carlos LD; Millán A ACS Nano; 2015 Mar; 9(3):3134-42. PubMed ID: 25693033 [TBL] [Abstract][Full Text] [Related]
3. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
4. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
5. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363 [TBL] [Abstract][Full Text] [Related]
6. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Shaterabadi Z; Nabiyouni G; Soleymani M Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133 [TBL] [Abstract][Full Text] [Related]
7. The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment. Beola L; Asín L; Roma-Rodrigues C; Fernández-Afonso Y; Fratila RM; Serantes D; Ruta S; Chantrell RW; Fernandes AR; Baptista PV; de la Fuente JM; Grazú V; Gutiérrez L ACS Appl Mater Interfaces; 2020 Sep; 12(39):43474-43487. PubMed ID: 32870658 [TBL] [Abstract][Full Text] [Related]
8. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Kneepkens E; Heijman E; Keupp J; Weiss S; Nicolay K; Grüll H Invest Radiol; 2017 Oct; 52(10):620-630. PubMed ID: 28598900 [TBL] [Abstract][Full Text] [Related]
9. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization. Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392 [TBL] [Abstract][Full Text] [Related]
10. Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath. Kaur T; Sharma D Nanomedicine (Lond); 2022 Sep; 17(21):1607-1623. PubMed ID: 36318111 [TBL] [Abstract][Full Text] [Related]
11. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814 [TBL] [Abstract][Full Text] [Related]
12. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
13. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Johannsen M; Gneveckow U; Eckelt L; Feussner A; Waldöfner N; Scholz R; Deger S; Wust P; Loening SA; Jordan A Int J Hyperthermia; 2005 Nov; 21(7):637-47. PubMed ID: 16304715 [TBL] [Abstract][Full Text] [Related]
14. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Rabin Y Int J Hyperthermia; 2002; 18(3):194-202. PubMed ID: 12028637 [TBL] [Abstract][Full Text] [Related]
15. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control. Tillander M; Hokland S; Koskela J; Dam H; Andersen NP; Pedersen M; Tanderup K; Ylihautala M; Köhler M Med Phys; 2016 Mar; 43(3):1539-49. PubMed ID: 26936737 [TBL] [Abstract][Full Text] [Related]
17. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance. Curto S; Faridi P; Shrestha TB; Pyle M; Maurmann L; Troyer D; Bossmann SH; Prakash P Int J Hyperthermia; 2018 Jun; 34(4):341-351. PubMed ID: 28728442 [TBL] [Abstract][Full Text] [Related]
18. Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Cazares-Cortes E; Cabana S; Boitard C; Nehlig E; Griffete N; Fresnais J; Wilhelm C; Abou-Hassan A; Ménager C Adv Drug Deliv Rev; 2019 Jan; 138():233-246. PubMed ID: 30414493 [TBL] [Abstract][Full Text] [Related]
19. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Suriyanto ; Ng EY; Kumar SD Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790 [TBL] [Abstract][Full Text] [Related]
20. Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles. Wilhelm C; Fortin JP; Gazeau F J Nanosci Nanotechnol; 2007 Aug; 7(8):2933-7. PubMed ID: 17685322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]