BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 36940431)

  • 1. Do Models beyond Hybrid Density Functionals Increase the Agreement with Experiment for Predicted NMR Chemical Shifts or Electric Field Gradient Tensors in Organic Solids?
    Iuliucci RJ; Hartman JD; Beran GJO
    J Phys Chem A; 2023 Mar; 127(12):2846-2858. PubMed ID: 36940431
    [No Abstract]   [Full Text] [Related]  

  • 2. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Accurate Electric Field Gradient Calculations in Molecular Solids With Density Functional Theory.
    Hartman JD; Mathews A; Harper JK
    Front Chem; 2021; 9():751711. PubMed ID: 34692646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.
    Hartman JD; Monaco S; Schatschneider B; Beran GJ
    J Chem Phys; 2015 Sep; 143(10):102809. PubMed ID: 26374002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.
    Hartman JD; Day GM; Beran GJ
    Cryst Growth Des; 2016 Nov; 16(11):6479-6493. PubMed ID: 27829821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory.
    Beran GJO; Greenwell C; Cook C; Řezáč J
    Acc Chem Res; 2023 Dec; 56(23):3525-3534. PubMed ID: 37963266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids.
    Holmes ST; Iuliucci RJ; Mueller KT; Dybowski C
    J Chem Theory Comput; 2015 Nov; 11(11):5229-41. PubMed ID: 26894239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate 13-C and 15-N molecular crystal chemical shielding tensors from fragment-based electronic structure theory.
    Hartman JD; Beran GJO
    Solid State Nucl Magn Reson; 2018 Dec; 96():10-18. PubMed ID: 30273904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory.
    Stoychev GL; Auer AA; Neese F
    J Chem Theory Comput; 2018 Sep; 14(9):4756-4771. PubMed ID: 30048136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
    Cuny J; Furet E; Gautier R; Le Pollès L; Pickard CJ; d'Espinose de Lacaillerie JB
    Chemphyschem; 2009 Dec; 10(18):3320-9. PubMed ID: 19937665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Benchmark Set of Main-Group Nuclear Shielding Constants and NMR Chemical Shifts and Its Use to Evaluate Modern DFT Methods.
    Schattenberg CJ; Kaupp M
    J Chem Theory Comput; 2021 Dec; 17(12):7602-7621. PubMed ID: 34797677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of density functionals for predicting CO
    Lee JH; Hyldgaard P; Neaton JB
    J Chem Phys; 2022 Apr; 156(15):154113. PubMed ID: 35459296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the accuracy of solid-state nuclear magnetic resonance chemical shift prediction with a simple molecular correction.
    Dračínský M; Unzueta P; Beran GJO
    Phys Chem Chem Phys; 2019 Jul; 21(27):14992-15000. PubMed ID: 31237586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GIAO versus GIPAW: Comparison of Methods To Calculate
    Ludwig M; Himmel D; Hillebrecht H
    J Phys Chem A; 2020 Mar; 124(11):2173-2185. PubMed ID: 31999459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark accuracy of predicted NMR observables for quadrupolar
    Hartman JD; Spock LE; Harper JK
    Magn Reson Chem; 2023 Apr; 61(4):253-267. PubMed ID: 36567433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient computation of free energy surfaces of chemical reactions using ab initio molecular dynamics with hybrid functionals and plane waves.
    Mandal S; Nair NN
    J Comput Chem; 2020 Jul; 41(19):1790-1797. PubMed ID: 32407582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.
    Widdifield CM; Perras FA; Bryce DL
    Phys Chem Chem Phys; 2015 Apr; 17(15):10118-34. PubMed ID: 25790263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An
    Hossain QS; Ahmed S; Nishat SS; Hossain MZ; Khan MNI; Hasan T; Bashar MS; Hakim M; Syed IM; Hossain KS; Ahmed I
    RSC Adv; 2023 May; 13(21):14291-14305. PubMed ID: 37180022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.