These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36940448)

  • 1. Bioactive Compositions of Cinnamon (
    Xie Z; Li Y; Liu Z; Zeng M; Moore JC; Gao B; Wu X; Sun J; Wang TTY; Pehrsson P; He X; Yu LL
    J Agric Food Chem; 2023 Mar; 71(12):4890-4900. PubMed ID: 36940448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Compositions of Clove (
    Li Y; Liu Z; Zeng M; El Kadiri A; Huang J; Kim A; He X; Sun J; Chen P; Wang TTY; Zhang Y; Gao B; Xie Z; Yu LL
    J Agric Food Chem; 2022 Nov; 70(45):14403-14413. PubMed ID: 36318658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Compositions of
    Gao B; Zhu H; Liu Z; He X; Sun J; Li Y; Wu X; Pehrsson P; Zhang Y; Yu L
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Composition of Thyme (
    Yao Y; Whent M; Li Y; Liu Z; Pehrsson P; Sun J; Chen P; Huang D; Wang TTY; Wu X; Yu L
    J Agric Food Chem; 2023 Dec; 71(49):19523-19530. PubMed ID: 38039415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Composition of Rosemary (
    Yao Y; Choe U; Li Y; Liu Z; Zeng M; Wang TTY; Sun J; Wu X; Pehrsson P; He X; Zhang Y; Gao B; Moore JC; Chen P; Slavin M; Yu LL
    J Agric Food Chem; 2023 Dec; 71(48):18735-18745. PubMed ID: 37988686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Composition of Honeysuckle (
    Gao B; Zhu L; Liu Z; Li Y; He X; Wu X; Pehrsson P; Sun J; Xie Z; Slavin M; Yu LL
    J Agric Food Chem; 2023 Apr; ():. PubMed ID: 37021496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Compositions of Lianqiao (
    Gao B; Zhu H; Liu Z; He X; Sun J; Li Y; Wu X; Pehrsson P; Zhang Y; Yao Y; Yu L
    Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents.
    Mei J; Zhou Y; Yang X; Zhang F; Liu X; Yu B
    J Ethnopharmacol; 2021 Oct; 278():114303. PubMed ID: 34102269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant capacity of cinnamon extract for palm oil stability.
    Shahid MZ; Saima H; Yasmin A; Nadeem MT; Imran M; Afzaal M
    Lipids Health Dis; 2018 May; 17(1):116. PubMed ID: 29769067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2: an in silico study.
    Shahbazi B; Mafakher L; Teimoori-Toolabi L
    J Mol Model; 2022 Mar; 28(4):82. PubMed ID: 35249180
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Basu P; Maier C
    Pharmacognosy Res; 2016; 8(4):258-264. PubMed ID: 27695265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GB-2 blocking the interaction between ACE2 and wild type and mutation of spike protein of SARS-CoV-2.
    Tsai MS; Yang YH; Lin YS; Chang GH; Hsu CM; Yeh RA; Shu LH; Cheng YC; Liu HT; Wu YH; Wu YH; Shen RC; Wu CY
    Biomed Pharmacother; 2021 Oct; 142():112011. PubMed ID: 34388530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luteolin inhibits spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binding to angiotensin-converting enzyme 2.
    Zhu J; Yan H; Shi M; Zhang M; Lu J; Wang J; Chen L; Wang Y; Li L; Miao L; Zhang H
    Phytother Res; 2023 Aug; 37(8):3508-3521. PubMed ID: 37166054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-SARS-CoV-2 Activity of
    Campos MF; Mendonça SC; Peñaloza EMC; de Oliveira BAC; Rosa AS; Leitão GG; Tucci AR; Ferreira VNS; Oliveira TKF; Miranda MD; Allonso D; Leitão SG
    Molecules; 2023 Apr; 28(7):. PubMed ID: 37049921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Withanone from
    Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A
    Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.
    Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of hyphenated analytical techniques to identify the bioactive constituents of Gunnera perpensa L., a South African medicinal plant, which potently inhibit SARS-CoV-2 spike glycoprotein-host ACE2 binding.
    Invernizzi L; Moyo P; Cassel J; Isaacs FJ; Salvino JM; Montaner LJ; Tietjen I; Maharaj V
    Anal Bioanal Chem; 2022 May; 414(13):3971-3985. PubMed ID: 35419694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of antioxidant and anti-inflammatory activities and genotoxicity of alcoholic and aqueous extracts of four Fabiana species that grow in mountainous area of Argentina.
    Cuello S; Alberto MR; Zampini IC; Ordoñez RM; Isla MI
    J Ethnopharmacol; 2011 Sep; 137(1):512-22. PubMed ID: 21693175
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Varadarajan S; Narasimhan M; Balaji TM; Chamundeeswari DP; Sakthisekaran D
    J Contemp Dent Pract; 2020 Sep; 21(9):1027-1033. PubMed ID: 33568591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Bioactive Compounds of Moringa oleifera Leaves with SARS-CoV-2 Proteins to Combat COVID-19 Pathogenesis: a Phytochemical and In Silico Analysis.
    Siddiqui S; Upadhyay S; Ahmad R; Barkat MA; Jamal A; Alothaim AS; Hassan MZ; Rahman MA; Arshad M; Ahamad T; Khan MF; Shankar H; Ali M; Kaleem S; Ahmad J
    Appl Biochem Biotechnol; 2022 Dec; 194(12):5918-5944. PubMed ID: 35838886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.