BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36940521)

  • 1. BCH1 expression pattern contributes to the fruit carotenoid diversity between peach and apricot.
    Wang P; Lu S; Jing R; Hyden B; Li L; Zhao X; Zhang L; Han Y; Zhang X; Xu J; Chen H; Cao H
    Plant Physiol Biochem; 2023 Apr; 197():107647. PubMed ID: 36940521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis.
    Zhang L; Zhang Q; Li W; Zhang S; Xi W
    BMC Genomics; 2019 Nov; 20(1):876. PubMed ID: 31747897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species.
    Yan H; Pengfei W; Brennan H; Ping Q; Bingxiang L; Feiyan Z; Hongbo C; Haijiang C
    Plant Physiol Biochem; 2020 Jun; 151():113-123. PubMed ID: 32213457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).
    Zaghdoudi K; Pontvianne S; Framboisier X; Achard M; Kudaibergenova R; Ayadi-Trabelsi M; Kalthoum-Cherif J; Vanderesse R; Frochot C; Guiavarc'h Y
    Food Chem; 2015 Oct; 184():131-9. PubMed ID: 25872435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Apricot (
    García-Gómez BE; Salazar JA; Egea JA; Rubio M; Martínez-Gómez P; Ruiz D
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).
    Marty I; Bureau S; Sarkissian G; Gouble B; Audergon JM; Albagnac G
    J Exp Bot; 2005 Jul; 56(417):1877-86. PubMed ID: 15911563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid cleavage in chromoplasts of white and yellow-fleshed peach varieties.
    Giberti S; Giovannini D; Forlani G
    J Sci Food Agric; 2019 Mar; 99(4):1795-1803. PubMed ID: 30255587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China.
    Zhou W; Niu Y; Ding X; Zhao S; Li Y; Fan G; Zhang S; Liao K
    Food Chem; 2020 Nov; 330():127223. PubMed ID: 32521401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Key Genes Controlling Carotenoid Metabolism during Apricot Fruit Development by Integrating Metabolic Phenotypes and Gene Expression Profiles.
    Zhou W; Zhao S; Xu M; Niu Y; Nasier M; Fan G; Quan S; Zhang S; Wang Y; Liao K
    J Agric Food Chem; 2021 Aug; 69(32):9472-9483. PubMed ID: 34347458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits.
    Wang P; Lu S; Zhang X; Hyden B; Qin L; Liu L; Bai Y; Han Y; Wen Z; Xu J; Cao H; Chen H
    Plant Sci; 2021 Mar; 304():110739. PubMed ID: 33568291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation.
    Kita M; Kato M; Ban Y; Honda C; Yaegaki H; Ikoma Y; Moriguchi T
    J Agric Food Chem; 2007 May; 55(9):3414-20. PubMed ID: 17397180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENEA, a peach and apricot IgE-binding protein cross-reacting with the latex major allergen Hev b 5.
    Giangrieco I; Ricciardi T; Alessandri C; Farina L; Crescenzo R; Tuppo L; Ciancamerla M; Rafaiani C; Bernardi ML; Digilio AF; Cobucci-Ponzano B; Tamburrini M; Mari A; Ciardiello MA
    Mol Immunol; 2019 Aug; 112():347-357. PubMed ID: 31254775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).
    Ruiz D; Reich M; Bureau S; Renard CM; Audergon JM
    J Agric Food Chem; 2008 Jul; 56(13):4916-22. PubMed ID: 18557619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Genes of
    Xi W; Zhang L; Liu S; Zhao G
    Front Plant Sci; 2020; 11():607715. PubMed ID: 33391319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism.
    Brandi F; Bar E; Mourgues F; Horváth G; Turcsi E; Giuliano G; Liverani A; Tartarini S; Lewinsohn E; Rosati C
    BMC Plant Biol; 2011 Jan; 11():24. PubMed ID: 21269483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color.
    Ruiz D; Egea J; Tomás-Barberán FA; Gil MI
    J Agric Food Chem; 2005 Aug; 53(16):6368-74. PubMed ID: 16076120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening.
    Pan L; Zeng W; Niu L; Lu Z; Liu H; Cui G; Zhu Y; Chu J; Li W; Fang W; Cai Z; Li G; Wang Z
    J Exp Bot; 2015 Dec; 66(22):7031-44. PubMed ID: 26307136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Compositional Properties during Fruit Development and On-Tree Ripening of Two Common Apricot (Prunus armeniaca L.) Cultivars.
    Karabulut I; Ozdemir IS; Koc TB; Sislioglu K; Gokbulut I; Saritepe Y
    Chem Biodivers; 2021 Aug; 18(8):e2100286. PubMed ID: 34212492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Down-regulation of
    Song H; Liu J; Chen C; Zhang Y; Tang W; Yang W; Chen H; Li M; Jiang G; Sun S; Li J; Tu M; Wang L; Xu Z; Gong R; Chen D
    Front Plant Sci; 2022; 13():1055779. PubMed ID: 36407629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume).
    Numaguchi K; Akagi T; Kitamura Y; Ishikawa R; Ishii T
    Plant J; 2020 Dec; 104(6):1551-1567. PubMed ID: 33048374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.