BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36940534)

  • 1. The quantitative effect of antimicrobial usage in Danish pig farms on the abundance of antimicrobial resistance genes in slaughter pigs.
    Andersen VD; Møller FD; Jensen MS; Aarestrup FM; Vigre H
    Prev Vet Med; 2023 May; 214():105899. PubMed ID: 36940534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting effects of changed antimicrobial usage on the abundance of antimicrobial resistance genes in finisher' gut microbiomes.
    Andersen VD; Aarestrup FM; Munk P; Jensen MS; de Knegt LV; Bortolaia V; Knudsen BE; Lukjancenko O; Birkegård AC; Vigre H
    Prev Vet Med; 2020 Jan; 174():104853. PubMed ID: 31783288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk factors for the abundance of antimicrobial resistance genes aph(3')-III, erm(B), sul2 and tet(W) in pig and broiler faeces in nine European countries.
    Yang D; Heederik DJJ; Mevius DJ; Scherpenisse P; Luiken REC; Van Gompel L; Skarżyńska M; Wadepohl K; Chauvin C; Van Heijnsbergen E; Wouters IM; Greve GD; Jongerius-Gortemaker BGM; Tersteeg-Zijderveld M; Zając M; Wasyl D; Juraschek K; Fischer J; Wagenaar JA; Smit LAM; Schmitt H;
    J Antimicrob Chemother; 2022 Mar; 77(4):969-978. PubMed ID: 35061866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data-The LEA algorithm.
    Birkegård AC; Andersen VD; Halasa T; Jensen VF; Toft N; Vigre H
    Prev Vet Med; 2017 Oct; 146():173-180. PubMed ID: 28992924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness in quantifying the abundance of antimicrobial resistance genes in pooled faeces samples from batches of slaughter pigs using metagenomics analysis.
    Andersen VD; Jensen MS; Munk P; Vigre H
    J Glob Antimicrob Resist; 2021 Mar; 24():398-402. PubMed ID: 33626417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries.
    Luiken REC; Van Gompel L; Munk P; Sarrazin S; Joosten P; Dorado-García A; Borup Hansen R; Knudsen BE; Bossers A; Wagenaar JA; Aarestrup FM; Dewulf J; Mevius DJ; Heederik DJJ; Smit LAM; Schmitt H;
    J Antimicrob Chemother; 2019 Sep; 74(9):2596-2604. PubMed ID: 31199864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries.
    Van Gompel L; Luiken REC; Sarrazin S; Munk P; Knudsen BE; Hansen RB; Bossers A; Aarestrup FM; Dewulf J; Wagenaar JA; Mevius DJ; Schmitt H; Heederik DJJ; Dorado-García A; Smit LAM;
    J Antimicrob Chemother; 2019 Apr; 74(4):865-876. PubMed ID: 30649386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms.
    Birkegård AC; Halasa T; Græsbøll K; Clasen J; Folkesson A; Toft N
    Sci Rep; 2017 Aug; 7(1):9683. PubMed ID: 28852034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of antimicrobial usage with faecal abundance of aph(3')-III, ermB, sul2 and tetW resistance genes in veal calves in three European countries.
    Yang D; Van Gompel L; Luiken REC; Sanders P; Joosten P; van Heijnsbergen E; Wouters IM; Scherpenisse P; Chauvin C; Wadepohl K; Greve GD; Jongerius-Gortemaker BGM; Tersteeg-Zijderveld MHG; Soumet C; Skarżyńska M; Juraschek K; Fischer J; Wasyl D; Wagenaar JA; Dewulf J; Schmitt H; Mevius DJ; Heederik DJJ; Smit LAM;
    Int J Antimicrob Agents; 2020 Oct; 56(4):106131. PubMed ID: 32763373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms.
    Mencía-Ares O; Cabrera-Rubio R; Cobo-Díaz JF; Álvarez-Ordóñez A; Gómez-García M; Puente H; Cotter PD; Crispie F; Carvajal A; Rubio P; Argüello H
    Microbiome; 2020 Nov; 8(1):164. PubMed ID: 33213522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance.
    Zhou Y; Fu H; Yang H; Wu J; Chen Z; Jiang H; Liu M; Liu Q; Huang L; Gao J; Chen C
    Microbiome; 2022 Mar; 10(1):39. PubMed ID: 35246246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone.
    Smith RP; May HE; AbuOun M; Stubberfield E; Gilson D; Chau KK; Crook DW; Shaw LP; Read DS; Stoesser N; Vilar MJ; Anjum MF
    Front Microbiol; 2023; 14():1070340. PubMed ID: 36998408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial prescription data in Danish national database validated against treatment records in organic pig farms and analysed for associations with lesions found at slaughter.
    Kruse AB; Kristensen CS; Lavlund U; Stege H
    BMC Vet Res; 2019 Jun; 15(1):218. PubMed ID: 31248411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ALEX algorithm - estimating average lifetime antimicrobial exposure of danish slaughter pigs in a fast, automated and robust way.
    Bangsgaard EO; Andersen VD; Græsbøll K; Christiansen LE
    Prev Vet Med; 2023 Mar; 212():105829. PubMed ID: 36623359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial resistance in Escherichia coli isolated from pigs and associations with aggregated antimicrobial usage in Ireland: A herd-level exploration.
    Byrne AW; Garvan C; Bolton J; Naranjo-Lucena A; Madigan G; McElroy M; Slowey R
    Zoonoses Public Health; 2024 Feb; 71(1):71-83. PubMed ID: 37899534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries.
    Luiken RE; Heederik DJ; Scherpenisse P; Van Gompel L; van Heijnsbergen E; Greve GD; Jongerius-Gortemaker BG; Tersteeg-Zijderveld MH; Fischer J; Juraschek K; Skarżyńska M; Zając M; Wasyl D; ; Wagenaar JA; Smit LA; Wouters IM; Mevius DJ; Schmitt H
    Environ Res; 2022 May; 208():112715. PubMed ID: 35033551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage.
    Storey N; Cawthraw S; Turner O; Rambaldi M; Lemma F; Horton R; Randall L; Duggett NA; AbuOun M; Martelli F; Anjum MF
    Microb Genom; 2022 Mar; 8(3):. PubMed ID: 35344479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data.
    Sarrazin S; Joosten P; Van Gompel L; Luiken REC; Mevius DJ; Wagenaar JA; Heederik DJJ; Dewulf J;
    J Antimicrob Chemother; 2019 Mar; 74(3):807-816. PubMed ID: 30544242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial resistance monitoring in the Danish swine production by phenotypic methods and metagenomics from 1999 to 2018.
    Duarte ASR; Marques AR; Andersen VD; Korsgaard HB; Mordhorst H; Møller FD; Petersen TN; Vigre H; Hald T; Aarestrup FM
    Euro Surveill; 2023 May; 28(20):. PubMed ID: 37199989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the register-based lifetime antimicrobial usage measurement for finisher batches based on comparison with recorded antimicrobial usage at farm level.
    Andersen VD; Munk P; de Knegt LV; Jensen MS; Aarestrup FM; Vigre H
    Epidemiol Infect; 2018 Mar; 146(4):515-523. PubMed ID: 29409561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.