These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36940534)

  • 1. The quantitative effect of antimicrobial usage in Danish pig farms on the abundance of antimicrobial resistance genes in slaughter pigs.
    Andersen VD; Møller FD; Jensen MS; Aarestrup FM; Vigre H
    Prev Vet Med; 2023 May; 214():105899. PubMed ID: 36940534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting effects of changed antimicrobial usage on the abundance of antimicrobial resistance genes in finisher' gut microbiomes.
    Andersen VD; Aarestrup FM; Munk P; Jensen MS; de Knegt LV; Bortolaia V; Knudsen BE; Lukjancenko O; Birkegård AC; Vigre H
    Prev Vet Med; 2020 Jan; 174():104853. PubMed ID: 31783288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk factors for the abundance of antimicrobial resistance genes aph(3')-III, erm(B), sul2 and tet(W) in pig and broiler faeces in nine European countries.
    Yang D; Heederik DJJ; Mevius DJ; Scherpenisse P; Luiken REC; Van Gompel L; Skarżyńska M; Wadepohl K; Chauvin C; Van Heijnsbergen E; Wouters IM; Greve GD; Jongerius-Gortemaker BGM; Tersteeg-Zijderveld M; Zając M; Wasyl D; Juraschek K; Fischer J; Wagenaar JA; Smit LAM; Schmitt H;
    J Antimicrob Chemother; 2022 Mar; 77(4):969-978. PubMed ID: 35061866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data-The LEA algorithm.
    Birkegård AC; Andersen VD; Halasa T; Jensen VF; Toft N; Vigre H
    Prev Vet Med; 2017 Oct; 146():173-180. PubMed ID: 28992924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness in quantifying the abundance of antimicrobial resistance genes in pooled faeces samples from batches of slaughter pigs using metagenomics analysis.
    Andersen VD; Jensen MS; Munk P; Vigre H
    J Glob Antimicrob Resist; 2021 Mar; 24():398-402. PubMed ID: 33626417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries.
    Luiken REC; Van Gompel L; Munk P; Sarrazin S; Joosten P; Dorado-García A; Borup Hansen R; Knudsen BE; Bossers A; Wagenaar JA; Aarestrup FM; Dewulf J; Mevius DJ; Heederik DJJ; Smit LAM; Schmitt H;
    J Antimicrob Chemother; 2019 Sep; 74(9):2596-2604. PubMed ID: 31199864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries.
    Van Gompel L; Luiken REC; Sarrazin S; Munk P; Knudsen BE; Hansen RB; Bossers A; Aarestrup FM; Dewulf J; Wagenaar JA; Mevius DJ; Schmitt H; Heederik DJJ; Dorado-García A; Smit LAM;
    J Antimicrob Chemother; 2019 Apr; 74(4):865-876. PubMed ID: 30649386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms.
    Birkegård AC; Halasa T; Græsbøll K; Clasen J; Folkesson A; Toft N
    Sci Rep; 2017 Aug; 7(1):9683. PubMed ID: 28852034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of antimicrobial usage with faecal abundance of aph(3')-III, ermB, sul2 and tetW resistance genes in veal calves in three European countries.
    Yang D; Van Gompel L; Luiken REC; Sanders P; Joosten P; van Heijnsbergen E; Wouters IM; Scherpenisse P; Chauvin C; Wadepohl K; Greve GD; Jongerius-Gortemaker BGM; Tersteeg-Zijderveld MHG; Soumet C; Skarżyńska M; Juraschek K; Fischer J; Wasyl D; Wagenaar JA; Dewulf J; Schmitt H; Mevius DJ; Heederik DJJ; Smit LAM;
    Int J Antimicrob Agents; 2020 Oct; 56(4):106131. PubMed ID: 32763373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms.
    Mencía-Ares O; Cabrera-Rubio R; Cobo-Díaz JF; Álvarez-Ordóñez A; Gómez-García M; Puente H; Cotter PD; Crispie F; Carvajal A; Rubio P; Argüello H
    Microbiome; 2020 Nov; 8(1):164. PubMed ID: 33213522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance.
    Zhou Y; Fu H; Yang H; Wu J; Chen Z; Jiang H; Liu M; Liu Q; Huang L; Gao J; Chen C
    Microbiome; 2022 Mar; 10(1):39. PubMed ID: 35246246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone.
    Smith RP; May HE; AbuOun M; Stubberfield E; Gilson D; Chau KK; Crook DW; Shaw LP; Read DS; Stoesser N; Vilar MJ; Anjum MF
    Front Microbiol; 2023; 14():1070340. PubMed ID: 36998408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial prescription data in Danish national database validated against treatment records in organic pig farms and analysed for associations with lesions found at slaughter.
    Kruse AB; Kristensen CS; Lavlund U; Stege H
    BMC Vet Res; 2019 Jun; 15(1):218. PubMed ID: 31248411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ALEX algorithm - estimating average lifetime antimicrobial exposure of danish slaughter pigs in a fast, automated and robust way.
    Bangsgaard EO; Andersen VD; Græsbøll K; Christiansen LE
    Prev Vet Med; 2023 Mar; 212():105829. PubMed ID: 36623359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial resistance in Escherichia coli isolated from pigs and associations with aggregated antimicrobial usage in Ireland: A herd-level exploration.
    Byrne AW; Garvan C; Bolton J; Naranjo-Lucena A; Madigan G; McElroy M; Slowey R
    Zoonoses Public Health; 2024 Feb; 71(1):71-83. PubMed ID: 37899534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries.
    Luiken RE; Heederik DJ; Scherpenisse P; Van Gompel L; van Heijnsbergen E; Greve GD; Jongerius-Gortemaker BG; Tersteeg-Zijderveld MH; Fischer J; Juraschek K; Skarżyńska M; Zając M; Wasyl D; ; Wagenaar JA; Smit LA; Wouters IM; Mevius DJ; Schmitt H
    Environ Res; 2022 May; 208():112715. PubMed ID: 35033551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage.
    Storey N; Cawthraw S; Turner O; Rambaldi M; Lemma F; Horton R; Randall L; Duggett NA; AbuOun M; Martelli F; Anjum MF
    Microb Genom; 2022 Mar; 8(3):. PubMed ID: 35344479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data.
    Sarrazin S; Joosten P; Van Gompel L; Luiken REC; Mevius DJ; Wagenaar JA; Heederik DJJ; Dewulf J;
    J Antimicrob Chemother; 2019 Mar; 74(3):807-816. PubMed ID: 30544242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial resistance monitoring in the Danish swine production by phenotypic methods and metagenomics from 1999 to 2018.
    Duarte ASR; Marques AR; Andersen VD; Korsgaard HB; Mordhorst H; Møller FD; Petersen TN; Vigre H; Hald T; Aarestrup FM
    Euro Surveill; 2023 May; 28(20):. PubMed ID: 37199989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the register-based lifetime antimicrobial usage measurement for finisher batches based on comparison with recorded antimicrobial usage at farm level.
    Andersen VD; Munk P; de Knegt LV; Jensen MS; Aarestrup FM; Vigre H
    Epidemiol Infect; 2018 Mar; 146(4):515-523. PubMed ID: 29409561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.