These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36940548)

  • 1. Application of interaction models in predicting the simultaneous growth of Staphylococcus aureus and different concentrations of background microbiota in Chinese-style braised beef.
    Cheng C; Liu B; Tian M; Fang T; Li C
    Meat Sci; 2023 Jun; 200():109162. PubMed ID: 36940548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step Analysis for
    Liu Y; Wang X; Liu B; Dong Q
    J Food Prot; 2019 Nov; 82(11):1820-1827. PubMed ID: 31596616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive model of growth kinetics for Staphylococcus aureus in raw beef under various packaging systems.
    Yu HH; Song YJ; Kim YJ; Lee HY; Choi YS; Lee NK; Paik HD
    Meat Sci; 2020 Jul; 165():108108. PubMed ID: 32182547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Model for Growth of Staphylococcus aureus on Raw Pork, Ham, and Sausage.
    Mansur AR; Park JH; Oh DH
    J Food Prot; 2016 Jan; 79(1):132-7. PubMed ID: 26735039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature on the growth of Staphylococcus aureus in ready-to-eat cooked rice with pork floss.
    Lu KH; Sheen YJ; Huang TP; Kao SH; Cheng CL; Hwang CA; Sheen S; Huang L; Sheen LY
    Food Microbiol; 2020 Aug; 89():103374. PubMed ID: 32138980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting pathogen growth during short-term temperature abuse of raw pork, beef, and poultry products: use of an isothermal-based predictive tool.
    Ingham SC; Fanslau MA; Burnham GM; Ingham BH; Norback JP; Schaffner DW
    J Food Prot; 2007 Jun; 70(6):1446-56. PubMed ID: 17612076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens.
    Huang L
    Food Res Int; 2018 May; 107():248-256. PubMed ID: 29580482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphtox predictor - A dynamic mathematical model to predict formation of Staphylococcus enterotoxin during heating and fermentation of meat products.
    Gunvig A; Andresen MS; Jacobsen T; Borggaard C
    Int J Food Microbiol; 2018 Nov; 285():81-91. PubMed ID: 30071496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth kinetics of Staphylococcus aureus and background microorganisms in camel milk.
    Xie Z; Peng Y; Li C; Luo X; Wei Z; Li X; Yao Y; Fang T; Huang L
    J Dairy Sci; 2020 Nov; 103(11):9958-9968. PubMed ID: 32981731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sodium lactate, encapsulated or unencapsulated polyphosphates and their combinations on Salmonella Typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus growth in cooked ground beef.
    Tenderis B; Kılıç B; Yalçın H; Şimşek A
    Int J Food Microbiol; 2020 May; 321():108560. PubMed ID: 32078866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Escherichia coli O157:H7 growth in ground beef in the Greek chill chain.
    Kakagianni M; Koutsoumanis KP
    Food Res Int; 2019 Sep; 123():590-600. PubMed ID: 31285008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Clostridium perfringens in cooked chicken during cooling: One-step dynamic inverse analysis, sensitivity analysis, and Markov Chain Monte Carlo simulation.
    Huang L; Li C
    Food Microbiol; 2020 Feb; 85():103285. PubMed ID: 31500704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting and Modelling the Growth of Potentially Pathogenic Bacteria in Coalho Cheese.
    de Araújo VG; de Oliveira Arruda MD; Dantas Duarte FN; de Sousa JMB; da Costa Lima M; da Conceição ML; Schaffner DW; de Souza EL
    J Food Prot; 2017 Jul; 80(7):1172-1181. PubMed ID: 28604174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L
    J Food Sci; 2016 Jul; 81(7):M1754-65. PubMed ID: 27259065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental validated in silico model to assess Staphylococcus aureus growth kinetics on different pork products.
    Tango CN; Park JH; Oh DH
    J Appl Microbiol; 2016 Mar; 120(3):684-96. PubMed ID: 26669614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic kinetic analysis of growth of Listeria monocytogenes in pasteurized cow milk.
    Jia Z; Huang L; Wei Z; Yao Y; Fang T; Li C
    J Dairy Sci; 2021 Mar; 104(3):2654-2667. PubMed ID: 33455764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Nonthermal Decontamination Methods to Improve the Safety for Raw Beef Consumption.
    Park S; Park E; Yoon Y
    J Food Prot; 2022 Apr; 85(4):664-670. PubMed ID: 34935939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013.
    Lee YJ; Jung BS; Kim KT; Paik HD
    Meat Sci; 2015 Sep; 107():20-5. PubMed ID: 25930109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and mathematical modeling of the survival kinetics of
    Bai X; Xu Y; Shen Y; Guo N
    Food Sci Nutr; 2021 Dec; 9(12):6587-6595. PubMed ID: 34925788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.