BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36940601)

  • 1. Screening redox stability of iron rich by-products for effective phosphate immobilisation in freshwater sediments.
    Xia L; Vangansbeke A; Lauryssen F; Smolders E
    J Environ Manage; 2023 Jul; 337():117728. PubMed ID: 36940601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron rich glauconite sand as an efficient phosphate immobilising agent in river sediments.
    Xia L; David T; Verbeeck M; Bruneel Y; Smolders E
    Sci Total Environ; 2022 Mar; 811():152483. PubMed ID: 34923017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus immobilisation in sediment by using iron rich by-product as affected by water pH and sulphate concentrations.
    Xia L; van Dael T; Bergen B; Smolders E
    Sci Total Environ; 2023 Mar; 864():160820. PubMed ID: 36526189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions.
    Heinrich L; Rothe M; Braun B; Hupfer M
    Water Res; 2021 Feb; 189():116609. PubMed ID: 33254072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of external and internal loading on source-sink phosphorus dynamics of river sediment amended with iron-rich glauconite sand.
    Xia L; Verbeeck M; Bergen B; Smolders E
    J Environ Manage; 2023 Apr; 332():117396. PubMed ID: 36739774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment respiration contributes to phosphate release in lowland surface waters.
    van Dael T; De Cooman T; Verbeeck M; Smolders E
    Water Res; 2020 Jan; 168():115168. PubMed ID: 31627137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions.
    Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C
    Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of elevated sulfate in eutrophic waters on the internal phosphate release under oxic conditions across the sediment-water interface.
    Chen J; Zhang H; Liu L; Zhang J; Cooper M; Mortimer RJG; Pan G
    Sci Total Environ; 2021 Oct; 790():148010. PubMed ID: 34111791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments.
    Gao Y; Liang T; Tian S; Wang L; Holm PE; Bruun Hansen HC
    Environ Pollut; 2016 Dec; 219():466-474. PubMed ID: 27376987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do inundation provoke the release of phosphorus in soil-originated sediment due to nitrogen reduction after reclaiming lake from polder.
    Yuan H; Jia B; Wu J; Wang H; Yu J; Cai Y; Liu E; Li Q; Zeng Q
    J Environ Sci (China); 2022 Aug; 118():147-157. PubMed ID: 35305764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings.
    Petticrew EL; Arocena JM
    Sci Total Environ; 2001 Feb; 266(1-3):87-93. PubMed ID: 11258838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effect of zirconium-, iron-, and zirconium/iron-modified attapulgites capping and amendment on phosphorus mobilization in sediment.
    Liu N; Chen W; Lin J; Zhan Y
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18508-18526. PubMed ID: 34689275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China.
    Zhang Z; Cao R; Mamat Z; Mamat A; Chen Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15057-15067. PubMed ID: 32065365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization.
    Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G
    Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of black spots of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay, Lake Taihu].
    Liu GF; Zhong JC; He J; Zhang L; Fan CX
    Huan Jing Ke Xue; 2009 Sep; 30(9):2520-6. PubMed ID: 19927797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cable bacteria regulate sedimentary phosphorus release in freshwater sediments.
    Xu X; Weng N; Zhang H; van de Velde SJ; Hermans M; Wu F; Huo S
    Water Res; 2023 Aug; 242():120218. PubMed ID: 37390661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959.
    Tu L; Jarosch KA; Schneider T; Grosjean M
    Sci Total Environ; 2019 Oct; 685():806-817. PubMed ID: 31238284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.