These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36940661)
41. Power-free microfluidic biosensing of Salmonella with slide multivalve and disposable syringe. Guo R; Xue L; Jin N; Duan H; Li M; Lin J Biosens Bioelectron; 2022 Oct; 213():114458. PubMed ID: 35714495 [TBL] [Abstract][Full Text] [Related]
42. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Chen Q; Lin J; Gan C; Wang Y; Wang D; Xiong Y; Lai W; Li Y; Wang M Biosens Bioelectron; 2015 Dec; 74():504-11. PubMed ID: 26176211 [TBL] [Abstract][Full Text] [Related]
43. Smartphone-assisted biosensor based on broom-like bacteria-specific magnetic enrichment platform for colorimetric detection of Listeria monocytogenes. Xiao F; Li W; Wang Z; Xu Q; Song Y; Huang J; Bai X; Xu H J Hazard Mater; 2023 Oct; 459():132250. PubMed ID: 37567141 [TBL] [Abstract][Full Text] [Related]
44. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Wu Z; Zhou CH; Chen JJ; Xiong C; Chen Z; Pang DW; Zhang ZL Biosens Bioelectron; 2015 Jun; 68():586-592. PubMed ID: 25643598 [TBL] [Abstract][Full Text] [Related]
45. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Huang Z; Peng J; Han J; Zhang G; Huang Y; Duan M; Liu D; Xiong Y; Xia S; Lai W Food Chem; 2019 Mar; 276():333-341. PubMed ID: 30409603 [TBL] [Abstract][Full Text] [Related]
46. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study. Brandão D; Liébana S; Campoy S; Alegret S; Isabel Pividori M Talanta; 2015 Oct; 143():198-204. PubMed ID: 26078149 [TBL] [Abstract][Full Text] [Related]
47. Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors. Østerberg FW; Rizzi G; Zardán Gómez de la Torre T; Strömberg M; Strømme M; Svedlindh P; Hansen MF Biosens Bioelectron; 2013 Feb; 40(1):147-52. PubMed ID: 22841901 [TBL] [Abstract][Full Text] [Related]
48. Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Wang L; Huo X; Guo R; Zhang Q; Lin J Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30518091 [TBL] [Abstract][Full Text] [Related]
49. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Man Y; Ban M; Li A; Jin X; Du Y; Pan L Food Chem; 2021 Aug; 354():129578. PubMed ID: 33756331 [TBL] [Abstract][Full Text] [Related]
50. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Kim G; Moon JH; Moh CY; Lim JG Biosens Bioelectron; 2015 May; 67():243-7. PubMed ID: 25172028 [TBL] [Abstract][Full Text] [Related]
51. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Suaifan GA; Alhogail S; Zourob M Biosens Bioelectron; 2017 Apr; 90():230-237. PubMed ID: 27914366 [TBL] [Abstract][Full Text] [Related]
52. Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Alamer S; Eissa S; Chinnappan R; Herron P; Zourob M Talanta; 2018 Aug; 185():275-280. PubMed ID: 29759200 [TBL] [Abstract][Full Text] [Related]
53. A microfluidic immunosensor for visual detection of foodborne bacteria using immunomagnetic separation, enzymatic catalysis and distance indication. Cai G; Zheng L; Liao M; Li Y; Wang M; Liu N; Lin J Mikrochim Acta; 2019 Nov; 186(12):757. PubMed ID: 31707541 [TBL] [Abstract][Full Text] [Related]
54. Colorimetric Detection of Jo Y; Park J; Park JK Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316232 [TBL] [Abstract][Full Text] [Related]
55. Multiplexed detection of foodborne pathogens based on magnetic particles. Brandão D; Liébana S; Pividori MI N Biotechnol; 2015 Sep; 32(5):511-20. PubMed ID: 25858812 [TBL] [Abstract][Full Text] [Related]
56. A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7. Wang R; Lum J; Callaway Z; Lin J; Bottje W; Li Y Biosensors (Basel); 2015 Dec; 5(4):791-803. PubMed ID: 26694478 [TBL] [Abstract][Full Text] [Related]
57. A colorimetric sensor for Staphylococcus aureus detection based on controlled click chemical-induced aggregation of gold nanoparticles and immunomagnetic separation. Liu Y; Wang X; Shi X; Sun M; Wang L; Hu Z; Liu F; Liu Q; Wang P; Li J; Zhao C Mikrochim Acta; 2022 Feb; 189(3):104. PubMed ID: 35157143 [TBL] [Abstract][Full Text] [Related]
58. Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Kapperud G; Vardund T; Skjerve E; Hornes E; Michaelsen TE Appl Environ Microbiol; 1993 Sep; 59(9):2938-44. PubMed ID: 8215366 [TBL] [Abstract][Full Text] [Related]
59. Paper-based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. You SM; Jeong KB; Luo K; Park JS; Park JW; Kim YR Anal Chim Acta; 2021 Mar; 1151():338252. PubMed ID: 33608074 [TBL] [Abstract][Full Text] [Related]
60. Immunomagnetic Separation of Salmonella with Tailored Magnetic Micro- and Nanocarriers. Pividori MI Methods Mol Biol; 2021; 2182():51-65. PubMed ID: 32894487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]