These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36941058)

  • 1. Different Control Strategies Drive Interlimb Differences in Performance and Adaptation during Reaching Movements in Novel Dynamics.
    Córdova Bulens D; Cluff T; Blondeau L; Moore RT; Lefèvre P; Crevecoeur F
    eNeuro; 2023 Apr; 10(4):. PubMed ID: 36941058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position.
    Duff SV; Sainburg RL
    Exp Brain Res; 2007 Jun; 179(4):551-61. PubMed ID: 17171336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a dynamic-dominance hypothesis of handedness.
    Sainburg RL
    Exp Brain Res; 2002 Jan; 142(2):241-58. PubMed ID: 11807578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater reliance on impedance control in the nondominant arm compared with the dominant arm when adapting to a novel dynamic environment.
    Schabowsky CN; Hidler JM; Lum PS
    Exp Brain Res; 2007 Oct; 182(4):567-77. PubMed ID: 17611744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation.
    Wang J; Przybyla A; Wuebbenhorst K; Haaland KY; Sainburg RL
    Exp Brain Res; 2011 Apr; 210(2):283-90. PubMed ID: 21424842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Handedness can be explained by a serial hybrid control scheme.
    Yadav V; Sainburg RL
    Neuroscience; 2014 Oct; 278():385-96. PubMed ID: 25173152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.
    Reuter EM; Cunnington R; Mattingley JB; Riek S; Carroll TJ
    J Neurophysiol; 2016 Nov; 116(5):2260-2271. PubMed ID: 27582293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb differences in visuomotor and dynamic adaptation during targeted reaching in children.
    Bagesteiro LB; Lima KO; Wang J
    Hum Mov Sci; 2021 Jun; 77():102788. PubMed ID: 33798930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondominant-to-dominant hand interference in bimanual movements is facilitated by gradual visuomotor perturbation.
    Kagerer FA
    Neuroscience; 2016 Mar; 318():94-103. PubMed ID: 26779835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor lateralization is characterized by a serial hybrid control scheme.
    Yadav V; Sainburg RL
    Neuroscience; 2011 Nov; 196():153-67. PubMed ID: 21889579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements.
    Bao S; Morgan AM; Lei Y; Wang J
    Neuropsychologia; 2020 Jan; 136():107265. PubMed ID: 31738940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The symmetry of interlimb transfer depends on workspace locations.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Apr; 170(4):464-71. PubMed ID: 16328262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.
    Lefumat HZ; Vercher JL; Miall RC; Cole J; Buloup F; Bringoux L; Bourdin C; Sarlegna FR
    J Neurophysiol; 2015 Nov; 114(5):2764-74. PubMed ID: 26334018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlimb transfer of visuomotor rotations depends on handedness.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Nov; 175(2):223-30. PubMed ID: 16733695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb dominance results from asymmetries in predictive and impedance control mechanisms.
    Yadav V; Sainburg RL
    PLoS One; 2014; 9(4):e93892. PubMed ID: 24695543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole body adaptation to novel dynamics does not transfer between effectors.
    Pienciak-Siewert A; Ahmed AA
    J Neurophysiol; 2021 Oct; 126(4):1345-1360. PubMed ID: 34433001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs.
    Wang J
    Exp Brain Res; 2008 May; 187(3):483-90. PubMed ID: 18437367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged training does not result in a greater extent of interlimb transfer following visuomotor adaptation.
    Lei Y; Wang J
    Brain Cogn; 2014 Nov; 91():95-9. PubMed ID: 25282328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.