These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36941058)

  • 21. Prolonged training does not result in a greater extent of interlimb transfer following visuomotor adaptation.
    Lei Y; Wang J
    Brain Cogn; 2014 Nov; 91():95-9. PubMed ID: 25282328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contralateral manual compensation for velocity-dependent force perturbations.
    Jackson CP; Miall RC
    Exp Brain Res; 2008 Jan; 184(2):261-7. PubMed ID: 17973103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle effort is best minimized by the right-dominant arm in the gravity field.
    Poirier G; Papaxanthis C; Mourey F; Lebigre M; Gaveau J
    J Neurophysiol; 2022 Apr; 127(4):1117-1126. PubMed ID: 35353617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlimb differences in coordination of unsupported reaching movements.
    Schaffer JE; Sainburg RL
    Neuroscience; 2017 May; 350():54-64. PubMed ID: 28344068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Handedness: dominant arm advantages in control of limb dynamics.
    Bagesteiro LB; Sainburg RL
    J Neurophysiol; 2002 Nov; 88(5):2408-21. PubMed ID: 12424282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances.
    Crevecoeur F; Scott SH; Cluff T
    J Neurosci; 2019 Oct; 39(41):8135-8148. PubMed ID: 31488611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interlimb transfer of novel inertial dynamics is asymmetrical.
    Wang J; Sainburg RL
    J Neurophysiol; 2004 Jul; 92(1):349-60. PubMed ID: 15028745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The dominant and nondominant arms are specialized for stabilizing different features of task performance.
    Wang J; Sainburg RL
    Exp Brain Res; 2007 Apr; 178(4):565-70. PubMed ID: 17380323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limitations on coupling of bimanual movements caused by arm dominance: when the muscle homology principle fails.
    Dounskaia N; Nogueira KG; Swinnen SP; Drummond E
    J Neurophysiol; 2010 Apr; 103(4):2027-38. PubMed ID: 20071629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements despite the awareness of the visuomotor perturbation.
    Javidialsaadi M; Wang J
    Brain Cogn; 2021 Feb; 147():105653. PubMed ID: 33221664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic dominance varies with handedness: reduced interlimb asymmetries in left-handers.
    Przybyla A; Good DC; Sainburg RL
    Exp Brain Res; 2012 Feb; 216(3):419-31. PubMed ID: 22113487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experiencing a reaching task passively with one arm while adapting to a visuomotor rotation with the other can lead to substantial transfer of motor learning across the arms.
    Bao S; Lei Y; Wang J
    Neurosci Lett; 2017 Jan; 638():109-113. PubMed ID: 27988346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competition for limited neural resources in older adults leads to greater asymmetry of bilateral movements than in young adults.
    Woytowicz EJ; Sainburg RL; Westlake KP; Whitall J
    J Neurophysiol; 2020 Apr; 123(4):1295-1304. PubMed ID: 31913762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transfer of learning between the arms during bimanual reaching.
    Harley LR; Prilutsky BI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6785-8. PubMed ID: 23367487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces.
    Galea JM; Miall RC; Woolley DG
    Exp Brain Res; 2007 Sep; 182(2):267-73. PubMed ID: 17703286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shared bimanual tasks elicit bimanual reflexes during movement.
    Mutha PK; Sainburg RL
    J Neurophysiol; 2009 Dec; 102(6):3142-55. PubMed ID: 19793874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements.
    Woytowicz EJ; Westlake KP; Whitall J; Sainburg RL
    J Neurophysiol; 2018 Aug; 120(2):729-740. PubMed ID: 29742023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateralized sensitivity of motor memories to the kinematics of the opposite arm reveals functional specialization during bimanual actions.
    Yokoi A; Hirashima M; Nozaki D
    J Neurosci; 2014 Jul; 34(27):9141-51. PubMed ID: 24990934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.