These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 36941263)
1. Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome. Barker R; Kruse CPS; Johnson C; Saravia-Butler A; Fogle H; Chang HS; Trane RM; Kinscherf N; Villacampa A; Manzano A; Herranz R; Davin LB; Lewis NG; Perera I; Wolverton C; Gupta P; Jaiswal P; Reinsch SS; Wyatt S; Gilroy S NPJ Microgravity; 2023 Mar; 9(1):21. PubMed ID: 36941263 [TBL] [Abstract][Full Text] [Related]
2. Test of Barker R; Lombardino J; Rasmussen K; Gilroy S Front Plant Sci; 2020; 11():147. PubMed ID: 32265943 [TBL] [Abstract][Full Text] [Related]
3. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. Paul AL; Zupanska AK; Schultz ER; Ferl RJ BMC Plant Biol; 2013 Aug; 13():112. PubMed ID: 23919896 [TBL] [Abstract][Full Text] [Related]
4. Network Analysis of Gene Transcriptions of Manian V; Orozco J; Gangapuram H; Janwa H; Agrinsoni C Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668919 [TBL] [Abstract][Full Text] [Related]
5. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Vandenbrink JP; Herranz R; Poehlman WL; Alex Feltus F; Villacampa A; Ciska M; Javier Medina F; Kiss JZ Am J Bot; 2019 Nov; 106(11):1466-1476. PubMed ID: 31709515 [TBL] [Abstract][Full Text] [Related]
6. Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial "spaceflight response". Morrison MD; Nicholson WL Sci Rep; 2018 Sep; 8(1):14403. PubMed ID: 30258082 [TBL] [Abstract][Full Text] [Related]
7. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Beheshti A; Cekanaviciute E; Smith DJ; Costes SV Sci Rep; 2018 Mar; 8(1):4191. PubMed ID: 29520055 [TBL] [Abstract][Full Text] [Related]
8. Integrative transcriptomics and proteomics profiling of Olanrewaju GO; Haveman NJ; Naldrett MJ; Paul AL; Ferl RJ; Wyatt SE Front Plant Sci; 2023; 14():1260429. PubMed ID: 38089794 [TBL] [Abstract][Full Text] [Related]
9. Spaceflight bioreactor studies of cells and tissues. Freed LE; Vunjak-Novakovic G Adv Space Biol Med; 2002; 8():177-95. PubMed ID: 12951697 [TBL] [Abstract][Full Text] [Related]
10. Conserved plant transcriptional responses to microgravity from two consecutive spaceflight experiments. Land ES; Sheppard J; Doherty CJ; Perera IY Front Plant Sci; 2023; 14():1308713. PubMed ID: 38259952 [TBL] [Abstract][Full Text] [Related]
11. Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Vahlensieck C; Thiel CS; Adelmann J; Lauber BA; Polzer J; Ullrich O Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445156 [TBL] [Abstract][Full Text] [Related]
12. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. Johnson CM; Subramanian A; Edelmann RE; Kiss JZ J Plant Res; 2015 Nov; 128(6):1007-16. PubMed ID: 26376793 [TBL] [Abstract][Full Text] [Related]
13. Functional Meta-Analysis of the Proteomic Responses of Arabidopsis Seedlings to the Spaceflight Environment Reveals Multi-Dimensional Sources of Variability across Spaceflight Experiments. Olanrewaju GO; Kruse CPS; Wyatt SE Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833871 [TBL] [Abstract][Full Text] [Related]
14. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. Zhou M; Sng NJ; LeFrois CE; Paul AL; Ferl RJ BMC Genomics; 2019 Mar; 20(1):205. PubMed ID: 30866818 [TBL] [Abstract][Full Text] [Related]
15. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Zupanska AK; Schultz ER; Yao J; Sng NJ; Zhou M; Callaham JB; Ferl RJ; Paul AL Astrobiology; 2017 Nov; 17(11):1077-1111. PubMed ID: 29088549 [TBL] [Abstract][Full Text] [Related]
16. Spaceflight-induced alternative splicing during seedling development in Beisel NS; Noble J; Barbazuk WB; Paul AL; Ferl RJ NPJ Microgravity; 2019; 5():9. PubMed ID: 30963109 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Johnson CM; Subramanian A; Pattathil S; Correll MJ; Kiss JZ Am J Bot; 2017 Aug; 104(8):1219-1231. PubMed ID: 28827451 [TBL] [Abstract][Full Text] [Related]
19. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Zupanska AK; Denison FC; Ferl RJ; Paul AL Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370 [TBL] [Abstract][Full Text] [Related]
20. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Valbuena MA; Manzano A; Vandenbrink JP; Pereda-Loth V; Carnero-Diaz E; Edelmann RE; Kiss JZ; Herranz R; Medina FJ Planta; 2018 Sep; 248(3):691-704. PubMed ID: 29948124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]