These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 36941264)
1. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Yan L; Sun X Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36515467 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954 [TBL] [Abstract][Full Text] [Related]
4. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. Sang-Aram C; Browaeys R; Seurinck R; Saeys Y Elife; 2024 May; 12():. PubMed ID: 38787371 [TBL] [Abstract][Full Text] [Related]
5. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Zhou Z; Zhong Y; Zhang Z; Ren X Nat Commun; 2023 Dec; 14(1):7930. PubMed ID: 38040768 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics. Hu Y; Xie M; Li Y; Rao M; Shen W; Luo C; Qin H; Baek J; Zhou XM Genome Biol; 2024 Aug; 25(1):212. PubMed ID: 39123269 [TBL] [Abstract][Full Text] [Related]
7. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data. Cheng A; Hu G; Li WV Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733 [TBL] [Abstract][Full Text] [Related]
8. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
9. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Miller BF; Huang F; Atta L; Sahoo A; Fan J Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922 [TBL] [Abstract][Full Text] [Related]
10. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. Yuan Z; Zhao F; Lin S; Zhao Y; Yao J; Cui Y; Zhang XY; Zhao Y Nat Methods; 2024 Apr; 21(4):712-722. PubMed ID: 38491270 [TBL] [Abstract][Full Text] [Related]
11. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology. Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y bioRxiv; 2023 Dec; ():. PubMed ID: 38187541 [TBL] [Abstract][Full Text] [Related]
12. BayesTME: An end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. Zhang H; Hunter MV; Chou J; Quinn JF; Zhou M; White RM; Tansey W Cell Syst; 2023 Jul; 14(7):605-619.e7. PubMed ID: 37473731 [TBL] [Abstract][Full Text] [Related]
13. Simulating multiple variability in spatially resolved transcriptomics with scCube. Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768 [TBL] [Abstract][Full Text] [Related]
14. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics. Swain AK; Pandit V; Sharma J; Yadav P Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505 [TBL] [Abstract][Full Text] [Related]
15. Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA. Wang MG; Chen L; Zhang XF Nucleic Acids Res; 2024 Nov; 52(20):12173-12190. PubMed ID: 39404057 [TBL] [Abstract][Full Text] [Related]
17. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology. Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342 [TBL] [Abstract][Full Text] [Related]
18. Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data. Liu X; Ren X Genomics Proteomics Bioinformatics; 2024 Sep; 22(3):. PubMed ID: 39110523 [TBL] [Abstract][Full Text] [Related]
19. Evaluating spatially variable gene detection methods for spatial transcriptomics data. Chen C; Kim HJ; Yang P Genome Biol; 2024 Jan; 25(1):18. PubMed ID: 38225676 [TBL] [Abstract][Full Text] [Related]
20. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning. Tu JJ; Li HS; Yan H; Zhang XF Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]