BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36941330)

  • 1. Development of a novel experimental technique for the measurement of residual wall layer thickness in water-oil displacement flows.
    Zhang Y; Barrouillet B; Chavan SM; Skadsem HJ
    Sci Rep; 2023 Mar; 13(1):4530. PubMed ID: 36941330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of laminar and turbulent displacement of residual oil film.
    Zhang Y; Barrouillet B; Skadsem HJ
    Sci Rep; 2023 Nov; 13(1):21120. PubMed ID: 38036668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.
    De S; Krishnan P; van der Schaaf J; Kuipers JAM; Peters EAJF; Padding JT
    J Colloid Interface Sci; 2018 Jan; 510():262-271. PubMed ID: 28950172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement Mechanisms of Residual Oil Film in 2D Microchannels.
    Fan J; Liu L; Ni S; Zhao J
    ACS Omega; 2021 Feb; 6(6):4155-4160. PubMed ID: 33644538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal Analysis of a Non-Newtonian Fluid Flow in a Rough-Walled Pipe.
    Bouchendouka A; Fellah ZEA; Larbi Z; Louna Z; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks.
    Rodríguez de Castro A; Oostrom M; Shokri N
    J Colloid Interface Sci; 2016 Jun; 472():34-43. PubMed ID: 26998787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Semi-Analytical Method for Channel and Pipe Flows for the Linear Phan-Thien-Tanner Fluid Model with a Solvent Contribution.
    de Araujo MT; Furlan L; Brandi A; Souza L
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the transition k-k-ω model application to transitional oscillatory pipe flows.
    Ramadan AB; Abd El-Rahman AI; Sabry AS
    J Acoust Soc Am; 2019 Mar; 145(3):1195. PubMed ID: 31067919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric study of the hydrodynamic roughness produced by a wall coating layer of heavy oil.
    Rushd S; Sanders RS
    Pet Sci; 2017; 14(1):155-166. PubMed ID: 32269591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical investigations of axisymmetric wave propagation in cylindrical pipe filled with fluid.
    Pan H; Koyano K; Usui Y
    J Acoust Soc Am; 2003 Jun; 113(6):3209-14. PubMed ID: 12822793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Research on Enhanced Oil Recovery Methods for Gas Injection of Fractured Reservoirs Based on Microfluidic Chips.
    Li X; Xiao K; Wang R; Li X
    ACS Omega; 2022 Aug; 7(31):27382-27389. PubMed ID: 35967021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-active compounds induce time-dependent and non-monotonic fluid-fluid displacement during low-salinity water flooding.
    Du Y; Xu K; Mejia L; Balhoff M
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):245-259. PubMed ID: 36379083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Physics-Based Signal Processing Approach for Noninvasive Ultrasonic Characterization of Multiphase Oil-Water-Gas Flows in a Pipe.
    Chillara VK; Sturtevant B; Pantea C; Sinha DN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1328-1346. PubMed ID: 32976096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of radial particle migration and stresslet distributions in particle-laden turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):34. PubMed ID: 29557508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-driven displacement of a liquid in a partially filled radial Hele-Shaw cell.
    Ward T; White AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046316. PubMed ID: 21599304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immiscible Viscous Fingering: The Simulation of Tertiary Polymer Displacements of Viscous Oils in 2D Slab Floods.
    Beteta A; Sorbie KS; Skauge A
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thickness of residual wetting film in liquid-liquid displacement.
    Beresnev I; Gaul W; Vigil RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026327. PubMed ID: 21929110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dynamics of Nanoparticle-enhanced Fluid Displacement in Porous Media - A Pore-scale Study.
    Pak T; Archilha NL; Mantovani IF; Moreira AC; Butler IB
    Sci Rep; 2018 Jul; 8(1):11148. PubMed ID: 30042520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.