These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36941607)

  • 1. Estimates of the permeability of extra-cellular pathways through the astrocyte endfoot sheath.
    Koch T; Vinje V; Mardal KA
    Fluids Barriers CNS; 2023 Mar; 20(1):20. PubMed ID: 36941607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle.
    Wang MX; Ray L; Tanaka KF; Iliff JJ; Heys J
    Glia; 2021 Mar; 69(3):715-728. PubMed ID: 33075175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A large portion of the astrocyte proteome is dedicated to perivascular endfeet, including critical components of the electron transport chain.
    Stokum JA; Shim B; Huang W; Kane M; Smith JA; Gerzanich V; Simard JM
    J Cereb Blood Flow Metab; 2021 Oct; 41(10):2546-2560. PubMed ID: 33818185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.
    Jin BJ; Smith AJ; Verkman AS
    J Gen Physiol; 2016 Dec; 148(6):489-501. PubMed ID: 27836940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cx43 carboxyl terminal domain determines AQP4 and Cx30 endfoot organization and blood brain barrier permeability.
    Cibelli A; Stout R; Timmermann A; de Menezes L; Guo P; Maass K; Seifert G; Steinhäuser C; Spray DC; Scemes E
    Sci Rep; 2021 Dec; 11(1):24334. PubMed ID: 34934080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion properties of molecules at the blood-brain interface: potential contributions of astrocyte endfeet to diffusion barrier functions.
    Nuriya M; Shinotsuka T; Yasui M
    Cereb Cortex; 2013 Sep; 23(9):2118-26. PubMed ID: 22776675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction.
    Mathiisen TM; Lehre KP; Danbolt NC; Ottersen OP
    Glia; 2010 Jul; 58(9):1094-103. PubMed ID: 20468051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of macroscopic solute transport in the murine brain.
    Ray LA; Pike M; Simon M; Iliff JJ; Heys JJ
    Fluids Barriers CNS; 2021 Dec; 18(1):55. PubMed ID: 34876169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model.
    Gan Y; Thomas JH; Kelley DH
    J R Soc Interface; 2024 Apr; 21(213):20230659. PubMed ID: 38565158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of convective and diffusive transport in the brain interstitium.
    Ray L; Iliff JJ; Heys JJ
    Fluids Barriers CNS; 2019 Mar; 16(1):6. PubMed ID: 30836968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is solute movement within the extracellular spaces of brain gray matter brought about primarily by diffusion or flow? A commentary on "Analysis of convective and diffusive transport in the brain interstitium" Fluids and Barriers of the CNS (2019) 16:6 by L. Ray, J.J. Iliff and J.J. Heys.
    Hladky SB; Barrand MA
    Fluids Barriers CNS; 2019 Jul; 16(1):24. PubMed ID: 31299992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction to: Estimates of the permeability of extra-cellular pathways through the astrocyte endfoot sheath.
    Koch T; Vinje V; Mardal KA
    Fluids Barriers CNS; 2023 Jul; 20(1):57. PubMed ID: 37496048
    [No Abstract]   [Full Text] [Related]  

  • 13. Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer's disease.
    Yang J; Lunde LK; Nuntagij P; Oguchi T; Camassa LM; Nilsson LN; Lannfelt L; Xu Y; Amiry-Moghaddam M; Ottersen OP; Torp R
    J Alzheimers Dis; 2011; 27(4):711-22. PubMed ID: 21891870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.
    Jin BJ; Zhang H; Binder DK; Verkman AS
    J Gen Physiol; 2013 Jan; 141(1):119-32. PubMed ID: 23277478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age.
    Mills WA; Woo AM; Jiang S; Martin J; Surendran D; Bergstresser M; Kimbrough IF; Eyo UB; Sofroniew MV; Sontheimer H
    Nat Commun; 2022 Apr; 13(1):1794. PubMed ID: 35379828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural activity induces strongly coupled electro-chemo-mechanical interactions and fluid flow in astrocyte networks and extracellular space-A computational study.
    Sætra MJ; Ellingsrud AJ; Rognes ME
    PLoS Comput Biol; 2023 Jul; 19(7):e1010996. PubMed ID: 37478153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network model of glymphatic flow under different experimentally-motivated parametric scenarios.
    Tithof J; Boster KAS; Bork PAR; Nedergaard M; Thomas JH; Kelley DH
    iScience; 2022 May; 25(5):104258. PubMed ID: 35521514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural localization of aquaporin 4 and alpha1-syntrophin in the vascular feet of brain astrocytes.
    Inoue M; Wakayama Y; Liu JW; Murahashi M; Shibuya S; Oniki H
    Tohoku J Exp Med; 2002 Jun; 197(2):87-93. PubMed ID: 12233788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study.
    Rey J; Sarntinoranont M
    Fluids Barriers CNS; 2018 Jul; 15(1):20. PubMed ID: 30012159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of nectin-2δ at perivascular astrocytic endfoot processes and degeneration of astrocytes and neurons in nectin-2 knockout mouse brain.
    Miyata M; Mandai K; Maruo T; Sato J; Shiotani H; Kaito A; Itoh Y; Wang S; Fujiwara T; Mizoguchi A; Takai Y; Rikitake Y
    Brain Res; 2016 Oct; 1649(Pt A):90-101. PubMed ID: 27545667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.