BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36941726)

  • 1. Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods.
    Lou C; Yang H; Deng H; Huang M; Li W; Liu G; Lee PW; Tang Y
    J Cheminform; 2023 Mar; 15(1):35. PubMed ID: 36941726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADMETopt: A Web Server for ADMET Optimization in Drug Design via Scaffold Hopping.
    Yang H; Sun L; Wang Z; Li W; Liu G; Tang Y
    J Chem Inf Model; 2018 Oct; 58(10):2051-2056. PubMed ID: 30251842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds.
    Yi J; Shi S; Fu L; Yang Z; Nie P; Lu A; Wu C; Deng Y; Hsieh C; Zeng X; Hou T; Cao D
    Nat Protoc; 2024 Apr; 19(4):1105-1121. PubMed ID: 38263521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR-assisted-MMPA to expand chemical transformation space for lead optimization.
    Fu L; Yang ZY; Yang ZJ; Yin MZ; Lu AP; Chen X; Liu S; Hou TJ; Cao DS
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties.
    Yang H; Lou C; Sun L; Li J; Cai Y; Wang Z; Li W; Liu G; Tang Y
    Bioinformatics; 2019 Mar; 35(6):1067-1069. PubMed ID: 30165565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning - Predicting Ames mutagenicity of small molecules.
    Chu CSM; Simpson JD; O'Neill PM; Berry NG
    J Mol Graph Model; 2021 Dec; 109():108011. PubMed ID: 34555723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDL-PPBopt: A Strategy for Prediction and Optimization of Human Plasma Protein Binding of Compounds via an Interpretable Deep Learning Method.
    Lou C; Yang H; Wang J; Huang M; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2022 Jun; 62(11):2788-2799. PubMed ID: 35607907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis.
    Hsu KH; Su BH; Tu YS; Lin OA; Tseng YJ
    PLoS One; 2016; 11(2):e0148900. PubMed ID: 26863515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds.
    Gadaleta D; Manganelli S; Manganaro A; Porta N; Benfenati E
    Toxicology; 2016 Aug; 370():20-30. PubMed ID: 27644887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformer-based molecular optimization beyond matched molecular pairs.
    He J; Nittinger E; Tyrchan C; Czechtizky W; Patronov A; Bjerrum EJ; Engkvist O
    J Cheminform; 2022 Mar; 14(1):18. PubMed ID: 35346368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Rules for Read-Across and In Silico Models of Mutagenicity.
    Benfenati E; Manganelli S; Giordano S; Raitano G; Manganaro A
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2015; 33(4):385-403. PubMed ID: 26403277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation.
    Wei Y; Li S; Li Z; Wan Z; Lin J
    Bioinformatics; 2022 May; 38(10):2863-2871. PubMed ID: 35561160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods.
    Huang Z; Lou S; Wang H; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2024 Feb; 37(2):361-373. PubMed ID: 38294881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing machine-learning models for mutagenicity prediction through better feature selection.
    Shinada NK; Koyama N; Ikemori M; Nishioka T; Hitaoka S; Hakura A; Asakura S; Matsuoka Y; Palaniappan SK
    Mutagenesis; 2022 Oct; 37(3-4):191-202. PubMed ID: 35554560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process.
    Sushko Y; Novotarskyi S; Körner R; Vogt J; Abdelaziz A; Tetko IV
    J Cheminform; 2014; 6(1):48. PubMed ID: 25544551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity.
    Zhang H; Kang YL; Zhu YY; Zhao KX; Liang JY; Ding L; Zhang TG; Zhang J
    Toxicol In Vitro; 2017 Jun; 41():56-63. PubMed ID: 28232239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compilation of safety impact information for extractables associated with materials used in pharmaceutical packaging, delivery, administration, and manufacturing systems.
    Jenke D; Carlson T
    PDA J Pharm Sci Technol; 2014; 68(5):407-55. PubMed ID: 25336416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MolOpt: A Web Server for Drug Design using Bioisosteric Transformation.
    Shan J; Ji C
    Curr Comput Aided Drug Des; 2020; 16(4):460-466. PubMed ID: 31272357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive Estimate of Risk from Existing Knowledge. Toxicity Prediction by Komputer Assisted Technology.
    Cariello NF; Wilson JD; Britt BH; Wedd DJ; Burlinson B; Gombar V
    Mutagenesis; 2002 Jul; 17(4):321-9. PubMed ID: 12110629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging applicability domains for in silico assessment of chemical mutagenicity.
    Liu R; Wallqvist A
    J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.