These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36942056)

  • 21. [Research progress on water footprint in agricultural products].
    Lu Y; Liu XW; Zhang XY
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3207-14. PubMed ID: 26995933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.
    Wang R; Zimmerman J
    Environ Sci Technol; 2016 May; 50(10):5143-53. PubMed ID: 27101068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey).
    Yerli C; Sahin U
    Braz J Biol; 2021; 82():e249745. PubMed ID: 34231666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional water footprints of potential biofuel production in China.
    Xie X; Zhang T; Wang L; Huang Z
    Biotechnol Biofuels; 2017; 10():95. PubMed ID: 28428820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the changes and driving forces of water footprints in China from 2002 to 2012: A perspective of final demand.
    Fan JL; Wang JD; Zhang X; Kong LS; Song QY
    Sci Total Environ; 2019 Feb; 650(Pt 1):1101-1111. PubMed ID: 30308798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of COVID-19 outbreak measures of lockdown on the Italian Carbon Footprint.
    Rugani B; Caro D
    Sci Total Environ; 2020 Oct; 737():139806. PubMed ID: 32492608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of physical quantity and value of natural capital in China since the 21st century based on a modified ecological footprint model.
    Li P; Zhang R; Wei H; Xu L
    Sci Total Environ; 2022 Feb; 806(Pt 2):150676. PubMed ID: 34599951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement and driving factors of grey water footprint efficiency in Yangtze River Basin.
    Fu T; Xu C; Yang L; Hou S; Xia Q
    Sci Total Environ; 2022 Jan; 802():149587. PubMed ID: 34454151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of virtual water flows in agriculture by changing cropping patterns using an integrated approach.
    Mehla MK; Kothari M; Singh PK; Bhakar SR; Yadav KK
    Heliyon; 2023 Dec; 9(12):e22603. PubMed ID: 38076115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial pattern characteristics of water footprint for maize production in Northeast China.
    Duan P; Qin L; Wang Y; He H
    J Sci Food Agric; 2016 Jan; 96(2):561-8. PubMed ID: 25654998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon footprint and water footprint in China: Similarities and differences.
    Wang Q; Ge S
    Sci Total Environ; 2020 Oct; 739():140070. PubMed ID: 32758954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional water footprint evaluation in China: a case of Liaoning.
    Dong H; Geng Y; Sarkis J; Fujita T; Okadera T; Xue B
    Sci Total Environ; 2013 Jan; 442():215-24. PubMed ID: 23178781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unlocking the Impacts of COVID-19 Lockdowns: Changes in Thermal Electricity Generation Water Footprint and Virtual Water Trade in Europe.
    Roidt M; Chini CM; Stillwell AS; Cominola A
    Environ Sci Technol Lett; 2020 Sep; 7(9):683-689. PubMed ID: 37566299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal variations of agricultural water footprint and its economic benefits in Xinjiang, northwestern China.
    Li Y; Deng M
    Sci Rep; 2021 Dec; 11(1):23864. PubMed ID: 34903760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water footprint and virtual water trade analysis in water-rich basins: Case of the Chaohu Lake Basin in China.
    Chen Y; Wang Y; Ding T; Wang K; Wu H
    Sci Total Environ; 2022 Oct; 843():156906. PubMed ID: 35753485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water footprint scenarios for 2050: a global analysis.
    Ercin AE; Hoekstra AY
    Environ Int; 2014 Mar; 64():71-82. PubMed ID: 24374780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring consumption-based planetary boundary indicators: An absolute water footprinting assessment of Chinese provinces and cities.
    Li M; Wiedmann T; Liu J; Wang Y; Hu Y; Zhang Z; Hadjikakou M
    Water Res; 2020 Oct; 184():116163. PubMed ID: 32758721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating the red jujube water footprint and economic water productivity into sustainable integrated management policy.
    Yu J; Long A; Deng X; He X; Zhang P; Wang J; Hai Y
    J Environ Manage; 2020 Sep; 269():110828. PubMed ID: 32561020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input-Output Model.
    Liu X; Xiong R; Guo P; Nie L; Shi Q; Li W; Cui J
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.