These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36944053)

  • 21. Macroporous Silk Nanofiber Cryogels with Tunable Properties.
    Zhang X; Hang Y; Ding Z; Xiao L; Cheng W; Lu Q
    Biomacromolecules; 2022 May; 23(5):2160-2169. PubMed ID: 35443774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications.
    Jain E; Srivastava A; Kumar A
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bioinspired, ice-templated multifunctional 3D cryogel composite crosslinked through in situ reduction of GO displayed improved mechanical, osteogenic and antimicrobial properties.
    Chopra V; Thomas J; Sharma A; Panwar V; Kaushik S; Ghosh D
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111584. PubMed ID: 33321630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity.
    Deng Z; Guo Y; Ma PX; Guo B
    J Colloid Interface Sci; 2018 Sep; 526():281-294. PubMed ID: 29751264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabricating Tough Interpenetrating Network Cryogels with DNA as the Primary Network for Biomedical Applications.
    Basu S; Johl R; Pacelli S; Gehrke S; Paul A
    ACS Macro Lett; 2020 Sep; 9(9):1230-1236. PubMed ID: 35638638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-form three-dimensional nanocellulose structure reinforced with poly(vinyl alcohol) using freeze-thaw process.
    Kim J; Choi J; Hyun J
    Carbohydr Polym; 2022 Dec; 298():120055. PubMed ID: 36241314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties.
    Li P; Jia Z; Wang Q; Tang P; Wang M; Wang K; Fang J; Zhao C; Ren F; Ge X; Lu X
    J Mater Chem B; 2018 Dec; 6(45):7427-7438. PubMed ID: 32254744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing.
    Takei T; Danjo S; Sakoguchi S; Tanaka S; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2018 Apr; 125(4):490-495. PubMed ID: 29167067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds.
    Andrabi SM; Kumar A
    Biomater Adv; 2023 Jul; 150():213424. PubMed ID: 37068405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications.
    Yin M; Li X; Liu Y; Ren X
    Carbohydr Polym; 2021 Aug; 266():118129. PubMed ID: 34044945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal.
    Otero-González L; Mikhalovsky SV; Václavíková M; Trenikhin MV; Cundy AB; Savina IN
    J Hazard Mater; 2020 Jan; 381():120996. PubMed ID: 31445473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and properties of cryogel based on poly(hydroxypropyl methacrylate).
    Zhai M; Ma F; Li J; Wan B; Yu N
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1401-1425. PubMed ID: 29667520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroporous zwitterionic composite cryogel based on chitosan oligosaccharide for antifungal application.
    Dong P; Shu X; Peng R; Lu S; Xie X; Shi Q
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112327. PubMed ID: 34474878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications.
    Sharma A; Bhat S; Vishnoi T; Nayak V; Kumar A
    Biomed Res Int; 2013; 2013():478279. PubMed ID: 23936806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sponge-like Scaffolds for Colorectal Cancer 3D Models: Substrate-Driven Difference in Micro-Tumors Morphology.
    Boroda A; Privar Y; Maiorova M; Skatova A; Bratskaya S
    Biomimetics (Basel); 2022 May; 7(2):. PubMed ID: 35645183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Highly Elastic and Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte for Reversible-Compressible Quasi-Solid-State Supercapacitors.
    Nan J; Zhang G; Zhu T; Wang Z; Wang L; Wang H; Chu F; Wang C; Tang C
    Adv Sci (Weinh); 2020 Jul; 7(14):2000587. PubMed ID: 32714764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.
    Liang X; Chen G; Lin S; Zhang J; Wang L; Zhang P; Lan Y; Liu J
    Adv Mater; 2022 Feb; 34(8):e2107106. PubMed ID: 34888962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation.
    Yun J; Tu C; Lin DQ; Xu L; Guo Y; Shen S; Zhang S; Yao K; Guan YX; Yao SJ
    J Chromatogr A; 2012 Jul; 1247():81-8. PubMed ID: 22695698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freeze-Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties.
    Park E; Ryu JH; Lee D; Lee H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4318-4329. PubMed ID: 33821606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.