These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36944136)

  • 21. Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain).
    Sanz-Montero ME; Cabestrero Ó; Sánchez-Román M
    Front Microbiol; 2019; 10():148. PubMed ID: 30800103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals.
    Edwards HG; Villar SE; Jehlicka J; Munshi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2273-80. PubMed ID: 16029849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples.
    Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L
    Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium
    Wang X; Kong X; Liu Q; Li K; Jiang Z; Gai H; Xiao M
    Microbiol Spectr; 2023 Jun; 11(3):e0036323. PubMed ID: 37039655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable Isotope Fractionation in a Cold Spring System, Utah, USA: Insights for Sample Selection on Mars.
    Knuth JM; Potter-McIntyre SL
    Astrobiology; 2021 Feb; 21(2):235-245. PubMed ID: 33021813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Biosignatures of Deep-Subsurface Organisms Preserved in Carbonates Over a 100,000 Year Timescale at a Surface-Accessible Mars Analog Site in Southeastern Utah.
    Pierce MP; Brazelton WJ
    Astrobiology; 2023 Sep; 23(9):979-990. PubMed ID: 37594859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site.
    Singh D; Sinha RK; Singh P; Roy N; Mukherjee S
    Astrobiology; 2022 May; 22(5):579-597. PubMed ID: 35171004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrochemical and isotopic characteristics of water sources for biological activity across a massive evaporite basin on the Tibetan Plateau: Implications for aquatic environments on early Mars.
    Shen J; Huang T; Zhang H; Lin W
    Sci Total Environ; 2024 Jul; 935():173442. PubMed ID: 38788948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite.
    Warren PH
    J Geophys Res; 1998 Jul; 103(E7):16759-73. PubMed ID: 11542298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring for a record of ancient Martian life.
    Farmer JD; Des Marais DJ
    J Geophys Res; 1999 Nov; 104(E11):26977-95. PubMed ID: 11543200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.
    McCutcheon J; Power IM; Harrison AL; Dipple GM; Southam G
    Environ Sci Technol; 2014 Aug; 48(16):9142-51. PubMed ID: 25072950
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Hickman-Lewis K; Moore KR; Hollis JJR; Tuite ML; Beegle LW; Bhartia R; Grotzinger JP; Brown AJ; Shkolyar S; Cavalazzi B; Smith CL
    Astrobiology; 2022 Sep; 22(9):1143-1163. PubMed ID: 35862422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of carbonate-rich outcrops on Mars by the Spirit rover.
    Morris RV; Ruff SW; Gellert R; Ming DW; Arvidson RE; Clark BC; Golden DC; Siebach K; Klingelhöfer G; Schröder C; Fleischer I; Yen AS; Squyres SW
    Science; 2010 Jul; 329(5990):421-4. PubMed ID: 20522738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life on Mars: chemical arguments and clues from Martian meteorites.
    Brack A; Pillinger CT
    Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The photochemical stability of carbonates on Mars.
    Quinn R; Zent AP; McKay CP
    Astrobiology; 2006 Aug; 6(4):581-91. PubMed ID: 16916284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An early-branching microbialite cyanobacterium forms intracellular carbonates.
    Couradeau E; Benzerara K; Gérard E; Moreira D; Bernard S; Brown GE; López-García P
    Science; 2012 Apr; 336(6080):459-62. PubMed ID: 22539718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars.
    Chen Y; Sun Y; Liu L; Shen J; Qu Y; Pan Y; Lin W
    Astrobiology; 2023 Feb; 23(2):172-182. PubMed ID: 36577041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.
    Hays L; Beaty D
    Astrobiology; 2017 Jan; 17(1):1-2. PubMed ID: 28072548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential role for microbial ureolysis in the rapid formation of carbonate tufa mounds.
    Medina Ferrer F; Rosen MR; Feyhl-Buska J; Russell VV; Sønderholm F; Loyd S; Shapiro R; Stamps BW; Petryshyn V; Demirel-Floyd C; Bailey JV; Johnson HA; Spear JR; Corsetti FA
    Geobiology; 2022 Jan; 20(1):79-97. PubMed ID: 34337850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars.
    Noffke N
    Astrobiology; 2021 Jul; 21(7):866-892. PubMed ID: 34042490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.