BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36944180)

  • 1. Chemical Feedback in the Self-Assembly and Function of Air-Liquid Interfaces: Insight into the Bottlenecks of CO
    Premadasa UI; Dong D; Stamberga D; Custelcean R; Roy S; Ma YZ; Bocharova V; Bryantsev VS; Doughty B
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19634-19645. PubMed ID: 36944180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Capture of CO
    Sanz-PĂ©rez ES; Murdock CR; Didas SA; Jones CW
    Chem Rev; 2016 Oct; 116(19):11840-11876. PubMed ID: 27560307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Assembly of Charged Oligomers and Amino Acids at the Air-Water Interface: An Avenue toward Surface-Directed CO
    Premadasa UI; Kumar N; Zhu Z; Stamberga D; Li T; Roy S; Carrillo JY; Einkauf JD; Custelcean R; Ma YZ; Bocharova V; Bryantsev VS; Doughty B
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):12052-12061. PubMed ID: 38411063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorbents for the Direct Capture of CO
    Shi X; Xiao H; Azarabadi H; Song J; Wu X; Chen X; Lackner KS
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):6984-7006. PubMed ID: 31379037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Air Capture of CO
    Custelcean R
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():217-234. PubMed ID: 35303770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-Ambient Temperature Direct Air Capture of CO
    Rim G; Kong F; Song M; Rosu C; Priyadarshini P; Lively RP; Jones CW
    JACS Au; 2022 Feb; 2(2):380-393. PubMed ID: 35252988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemically-Driven CO
    Premadasa UI; Bocharova V; Miles AR; Stamberga D; Belony S; Bryantsev VS; Elgattar A; Liao Y; Damron JT; Kidder MK; Doughty B; Custelcean R; Ma YZ
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202304957. PubMed ID: 37198131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current status and pillars of direct air capture technologies.
    Ozkan M; Nayak SP; Ruiz AD; Jiang W
    iScience; 2022 Apr; 25(4):103990. PubMed ID: 35310937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of CO
    Guta YA; Carneiro J; Li S; Innocenti G; Pang SH; Sakwa-Novak MA; Sievers C; Jones CW
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46790-46802. PubMed ID: 37774150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Separation Technology in Direct Air Capture.
    Ignatusha P; Lin H; Kapuscinsky N; Scoles L; Ma W; Patarachao B; Du N
    Membranes (Basel); 2024 Jan; 14(2):. PubMed ID: 38392657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Energy-Efficient Direct Air Capture with Photochemically-Driven CO
    Premadasa UI; Doughty B; Custelcean R; Ma YZ
    Chempluschem; 2024 Mar; ():e202300713. PubMed ID: 38456801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar-Powered Direct Air Capture: Techno-Economic and Environmental Assessment.
    Prats-Salvado E; Jagtap N; Monnerie N; Sattler C
    Environ Sci Technol; 2024 Feb; 58(5):2282-2292. PubMed ID: 38270080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing CO
    Walter ED; Zhang D; Chen Y; Sung Han K; Bazak JD; Burton S; O'Harra K; Hoyt DW; Bara JE; Malhotra D; Allec SI; Glezakou VA; Heldebrant DJ; Rousseau R
    ChemSusChem; 2023 Jul; 16(13):e202300157. PubMed ID: 37222654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Fabrication of Monodispersed Carbon Sphere: A Pathway Toward Energy-Efficient Direct Air Capture (DAC) Using Amino Acids.
    Alivand MS; McQuillan RV; Momeni A; Zavabeti A; Stevens GW; Mumford KA
    Small; 2023 Jul; 19(30):e2300150. PubMed ID: 37058083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in direct air capture by adsorption.
    Zhu X; Xie W; Wu J; Miao Y; Xiang C; Chen C; Ge B; Gan Z; Yang F; Zhang M; O'Hare D; Li J; Ge T; Wang R
    Chem Soc Rev; 2022 Aug; 51(15):6574-6651. PubMed ID: 35815699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing the Hybridization of a Metal-Organic Framework and Superbase-Derived Ionic Liquid for High-Performance Direct Air Capture of CO
    Qiu L; Peng L; Moitra D; Liu H; Fu Y; Dong Z; Hu W; Lei M; Jiang DE; Lin H; Hu J; McGarry KA; Popovs I; Li M; Ivanov AS; Yang Z; Dai S
    Small; 2023 Oct; 19(41):e2302708. PubMed ID: 37317018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance CO
    Moitra D; Mokhtari-Nori N; Siniard KM; Qiu L; Fan J; Dong Z; Hu W; Liu H; Jiang DE; Lin H; Hu J; Li M; Yang Z; Dai S
    ChemSusChem; 2023 Oct; 16(20):e202300808. PubMed ID: 37337311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging trends in direct air capture of CO
    Abdullatif Y; Sodiq A; Mir N; Bicer Y; Al-Ansari T; El-Naas MH; Amhamed AI
    RSC Adv; 2023 Feb; 13(9):5687-5722. PubMed ID: 36816069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Air Capture of CO
    Min YJ; Ganesan A; Realff MJ; Jones CW
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40992-41002. PubMed ID: 36047596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.