BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36945437)

  • 1. Dimerization and autophosphorylation of the MST family of kinases are controlled by the same set of residues.
    Weingartner KA; Tran T; Tripp KW; Kavran JM
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimerization and autophosphorylation of the MST family of kinases are controlled by the same set of residues.
    Weingartner KA; Tran T; Tripp KW; Kavran JM
    Biochem J; 2023 Aug; 480(15):1165-1182. PubMed ID: 37459121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing kinase domain proximity promotes MST2 autophosphorylation during Hippo signaling.
    Tran T; Mitra J; Ha T; Kavran JM
    J Biol Chem; 2020 Nov; 295(47):16166-16179. PubMed ID: 32994222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway.
    Hwang E; Cheong HK; Ul Mushtaq A; Kim HY; Yeo KJ; Kim E; Lee WC; Hwang KY; Cheong C; Jeon YH
    Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1944-53. PubMed ID: 25004971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A WW Tandem-Mediated Dimerization Mode of SAV1 Essential for Hippo Signaling.
    Lin Z; Xie R; Guan K; Zhang M
    Cell Rep; 2020 Sep; 32(10):108118. PubMed ID: 32905778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOB1 Mediated Phospho-recognition in the Core Mammalian Hippo Pathway.
    Couzens AL; Xiong S; Knight JDR; Mao DY; Guettler S; Picaud S; Kurinov I; Filippakopoulos P; Sicheri F; Gingras AC
    Mol Cell Proteomics; 2017 Jun; 16(6):1098-1110. PubMed ID: 28373298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling.
    Mana-Capelli S; McCollum D
    J Biol Chem; 2018 Nov; 293(47):18230-18241. PubMed ID: 30266805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation.
    Callus BA; Verhagen AM; Vaux DL
    FEBS J; 2006 Sep; 273(18):4264-76. PubMed ID: 16930133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK.
    Bae SJ; Ni L; Osinski A; Tomchick DR; Brautigam CA; Luo X
    Elife; 2017 Oct; 6():. PubMed ID: 29063833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition.
    Dey M; Cao C; Dar AC; Tamura T; Ozato K; Sicheri F; Dever TE
    Cell; 2005 Sep; 122(6):901-13. PubMed ID: 16179259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Regulation of the Mammalian Sterile 20-like Kinase 2 (MST2).
    Koehler TJ; Tran T; Weingartner KA; Kavran JM
    Biochemistry; 2022 Aug; 61(16):1683-1693. PubMed ID: 35895874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salvador has an extended SARAH domain that mediates binding to Hippo kinase.
    Cairns L; Tran T; Fowl BH; Patterson A; Kim YJ; Bothner B; Kavran JM
    J Biol Chem; 2018 Apr; 293(15):5532-5543. PubMed ID: 29519817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of neuronal cell death by c-Abl-Hippo/MST2 signaling pathway.
    Liu W; Wu J; Xiao L; Bai Y; Qu A; Zheng Z; Yuan Z
    PLoS One; 2012; 7(5):e36562. PubMed ID: 22590567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras.
    Praskova M; Khoklatchev A; Ortiz-Vega S; Avruch J
    Biochem J; 2004 Jul; 381(Pt 2):453-62. PubMed ID: 15109305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MST1/MST2 Protein Kinases: Regulation and Physiologic Roles.
    Galan JA; Avruch J
    Biochemistry; 2016 Oct; 55(39):5507-5519. PubMed ID: 27618557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5.
    Ni L; Li S; Yu J; Min J; Brautigam CA; Tomchick DR; Pan D; Luo X
    Structure; 2013 Oct; 21(10):1757-68. PubMed ID: 23972470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MST2 kinase regulates osteoblast differentiation by phosphorylating and inhibiting Runx2 in C2C12 cells.
    Won GW; Sung M; Lee Y; Lee YH
    Biochem Biophys Res Commun; 2019 May; 512(3):591-597. PubMed ID: 30910359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases.
    Pirruccello M; Sondermann H; Pelton JG; Pellicena P; Hoelz A; Chernoff J; Wemmer DE; Kuriyan J
    J Mol Biol; 2006 Aug; 361(2):312-26. PubMed ID: 16837009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation.
    Glantschnig H; Rodan GA; Reszka AA
    J Biol Chem; 2002 Nov; 277(45):42987-96. PubMed ID: 12223493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Okadaic Acid: a tool to study the hippo pathway.
    Hata Y; Timalsina S; Maimaiti S
    Mar Drugs; 2013 Mar; 11(3):896-902. PubMed ID: 23493077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.