These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36945499)

  • 1. Enhanced Behavioral Performance through Interareal Gamma and Beta Synchronization.
    Parto-Dezfouli M; Vezoli J; Bosman CA; Fries P
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced behavioral performance through interareal gamma and beta synchronization.
    Parto-Dezfouli M; Vezoli J; Bosman CA; Fries P
    Cell Rep; 2023 Oct; 42(10):113249. PubMed ID: 37837620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma Synchronization between V1 and V4 Improves Behavioral Performance.
    Rohenkohl G; Bosman CA; Fries P
    Neuron; 2018 Nov; 100(4):953-963.e3. PubMed ID: 30318415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-Down Beta Enhances Bottom-Up Gamma.
    Richter CG; Thompson WH; Bosman CA; Fries P
    J Neurosci; 2017 Jul; 37(28):6698-6711. PubMed ID: 28592697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization.
    Lewis CM; Bosman CA; Womelsdorf T; Fries P
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):E606-15. PubMed ID: 26787906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional stimulus selection through selective synchronization between monkey visual areas.
    Bosman CA; Schoffelen JM; Brunet N; Oostenveld R; Bastos AM; Womelsdorf T; Rubehn B; Stieglitz T; De Weerd P; Fries P
    Neuron; 2012 Sep; 75(5):875-88. PubMed ID: 22958827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus repetition modulates gamma-band synchronization in primate visual cortex.
    Brunet NM; Bosman CA; Vinck M; Roberts M; Oostenveld R; Desimone R; De Weerd P; Fries P
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3626-31. PubMed ID: 24554080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention Configures Synchronization Within Local Neuronal Networks for Processing of the Behaviorally Relevant Stimulus.
    Drebitz E; Haag M; Grothe I; Mandon S; Kreiter AK
    Front Neural Circuits; 2018; 12():71. PubMed ID: 30210309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical layers, rhythms and BOLD signals.
    Scheeringa R; Fries P
    Neuroimage; 2019 Aug; 197():689-698. PubMed ID: 29108940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma-band synchronization in visual cortex predicts speed of change detection.
    Womelsdorf T; Fries P; Mitra PP; Desimone R
    Nature; 2006 Feb; 439(7077):733-6. PubMed ID: 16372022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response.
    van Es MWJ; Schoffelen JM
    Neuroimage; 2019 Feb; 186():703-712. PubMed ID: 30468771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial attention modulates visual gamma oscillations across the human ventral stream.
    Magazzini L; Singh KD
    Neuroimage; 2018 Feb; 166():219-229. PubMed ID: 29104149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theta modulation of inter-regional gamma synchronization during auditory attention control.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2012 Jan; 1431():77-85. PubMed ID: 22133304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic large-scale network synchronization from perception to action.
    Hirvonen J; Monto S; Wang SH; Palva JM; Palva S
    Netw Neurosci; 2018; 2(4):442-463. PubMed ID: 30320293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective movement preparation is subserved by selective increases in corticomuscular gamma-band coherence.
    Schoffelen JM; Poort J; Oostenveld R; Fries P
    J Neurosci; 2011 May; 31(18):6750-8. PubMed ID: 21543604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual areas exert feedforward and feedback influences through distinct frequency channels.
    Bastos AM; Vezoli J; Bosman CA; Schoffelen JM; Oostenveld R; Dowdall JR; De Weerd P; Kennedy H; Fries P
    Neuron; 2015 Jan; 85(2):390-401. PubMed ID: 25556836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4.
    Fries P; Womelsdorf T; Oostenveld R; Desimone R
    J Neurosci; 2008 Apr; 28(18):4823-35. PubMed ID: 18448659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative theory of gamma synchronization in macaque V1.
    Lowet E; Roberts MJ; Peter A; Gips B; De Weerd P
    Elife; 2017 Aug; 6():. PubMed ID: 28857743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained gamma band synchronization in early visual areas reflects the level of selective attention.
    Kahlbrock N; Butz M; May ES; Schnitzler A
    Neuroimage; 2012 Jan; 59(1):673-81. PubMed ID: 21784164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.