These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36945504)

  • 1. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.
    Lee SY; Cheah JS; Zhao B; Xu C; Roh H; Kim CK; Cho KF; Udeshi ND; Carr SA; Ting AY
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.
    Lee SY; Cheah JS; Zhao B; Xu C; Roh H; Kim CK; Cho KF; Udeshi ND; Carr SA; Ting AY
    Nat Methods; 2023 Jun; 20(6):908-917. PubMed ID: 37188954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions.
    Kim CK; Cho KF; Kim MW; Ting AY
    Elife; 2019 Apr; 8():. PubMed ID: 30942168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity Labeling in Plants.
    Xu SL; Shrestha R; Karunadasa SS; Xie PQ
    Annu Rev Plant Biol; 2023 May; 74():285-312. PubMed ID: 36854476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Sensors and Actuators for Probing Proximity-Dependent Biotinylation in Living Cells.
    Chen R; Zhang N; Zhou Y; Jing J
    Front Cell Neurosci; 2022; 16():801644. PubMed ID: 35250484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TurboID-mediated proximity labeling for screening interacting proteins of FIP37 in
    Li X; Wei Y; Fei Q; Fu G; Gan Y; Shi C
    Plant Direct; 2023 Dec; 7(12):e555. PubMed ID: 38111714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient proximity labeling in living cells and organisms with TurboID.
    Branon TC; Bosch JA; Sanchez AD; Udeshi ND; Svinkina T; Carr SA; Feldman JL; Perrimon N; Ting AY
    Nat Biotechnol; 2018 Oct; 36(9):880-887. PubMed ID: 30125270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the molecular versatility of an optogenetic switch in yeast.
    Figueroa D; Baeza C; Ruiz D; Inzunza C; Romero A; Toro R; Salinas F
    Front Bioeng Biotechnol; 2022; 10():1029217. PubMed ID: 36457859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal control of small GTPases with light using the LOV domain.
    Wu YI; Wang X; He L; Montell D; Hahn KM
    Methods Enzymol; 2011; 497():393-407. PubMed ID: 21601095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-activated BioID - an optically activated proximity labeling system to study protein-protein interactions.
    Shafraz O; Davis CMO; Sivasankar S
    J Cell Sci; 2023 Oct; 136(19):. PubMed ID: 37756605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network analysis of chromophore binding site in LOV domain.
    Panda R; Panda PK; Krishnamoorthy J; Kar RK
    Comput Biol Med; 2023 Jul; 161():106996. PubMed ID: 37201443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis.
    Dorn M; Jurk M; Wartenberg A; Hahn A; Schmieder P
    PLoS One; 2013; 8(11):e81268. PubMed ID: 24278408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TurboID-Based Proximity Labeling for In Planta Identification of Protein-Protein Interaction Networks.
    Zhang Y; Li Y; Yang X; Wen Z; Nagalakshmi U; Dinesh-Kumar SP
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress.
    Zhang K; Li Y; Huang T; Li Z
    Front Plant Sci; 2022; 13():974598. PubMed ID: 36051300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling.
    Pudasaini A; El-Arab KK; Zoltowski BD
    Front Mol Biosci; 2015; 2():18. PubMed ID: 25988185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.