These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36945536)

  • 21. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques.
    Cao R; Adhikari B; Bhattacharya D; Sun M; Hou J; Cheng J
    Bioinformatics; 2017 Feb; 33(4):586-588. PubMed ID: 28035027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models.
    Chen X; Liu J; Park N; Cheng J
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38785981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distance-based reconstruction of protein quaternary structures from inter-chain contacts.
    Soltanikazemi E; Quadir F; Roy RS; Guo Z; Cheng J
    Proteins; 2022 Mar; 90(3):720-731. PubMed ID: 34716620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8.
    Wang Z; Eickholt J; Cheng J
    Bioinformatics; 2010 Apr; 26(7):882-8. PubMed ID: 20150411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11.
    Cao R; Bhattacharya D; Adhikari B; Li J; Cheng J
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):247-59. PubMed ID: 26369671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11.
    Li J; Cao R; Cheng J
    BMC Bioinformatics; 2015 Oct; 16():337. PubMed ID: 26493701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the assessment-All about complexes.
    Studer G; Tauriello G; Schwede T
    Proteins; 2023 Dec; 91(12):1850-1860. PubMed ID: 37858934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Impact of AI-Based Modeling on the Accuracy of Protein Assembly Prediction: Insights from CASP15.
    Ozden B; Kryshtafovych A; Karaca E
    bioRxiv; 2023 Sep; ():. PubMed ID: 37503072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.
    Ozden B; Kryshtafovych A; Karaca E
    Proteins; 2023 Dec; 91(12):1636-1657. PubMed ID: 37861057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved estimation of model quality using predicted inter-residue distance.
    Ye L; Wu P; Peng Z; Gao J; Liu J; Yang J
    Bioinformatics; 2021 Nov; 37(21):3752-3759. PubMed ID: 34473228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking of AlphaFold2 accuracy self-estimates as indicators of empirical model quality and ranking: a comparison with independent model quality assessment programmes.
    Edmunds NS; Genc AG; McGuffin LJ
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39115813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved protein model quality assessment by integrating sequential and pairwise features using deep learning.
    Jing X; Xu J
    Bioinformatics; 2021 Apr; 36(22-23):5361-5367. PubMed ID: 33325480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of global and local quality of CASP8 models by MULTICOM series.
    Cheng J; Wang Z; Tegge AN; Eickholt J
    Proteins; 2009; 77 Suppl 9():181-4. PubMed ID: 19544564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CONFOLD2: improved contact-driven ab initio protein structure modeling.
    Adhikari B; Cheng J
    BMC Bioinformatics; 2018 Jan; 19(1):22. PubMed ID: 29370750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15.
    Oda T
    Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing and benchmarking the MULTICOM protein structure prediction system.
    Li J; Deng X; Eickholt J; Cheng J
    BMC Struct Biol; 2013 Feb; 13():2. PubMed ID: 23442819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VoroIF-GNN: Voronoi tessellation-derived protein-protein interface assessment using a graph neural network.
    Olechnovič K; Venclovas Č
    Proteins; 2023 Dec; 91(12):1879-1888. PubMed ID: 37482904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DISTEMA: distance map-based estimation of single protein model accuracy with attentive 2D convolutional neural network.
    Chen X; Cheng J
    BMC Bioinformatics; 2022 Apr; 23(Suppl 3):141. PubMed ID: 35439931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein assemblies by structure sampling followed by interface-focused scoring.
    Olechnovič K; Valančauskas L; Dapkūnas J; Venclovas Č
    Proteins; 2023 Dec; 91(12):1724-1733. PubMed ID: 37578163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.