These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36945650)

  • 41. Benchmarking computational methods to identify spatially variable genes and peaks.
    Li Z; Patel ZM; Song D; Yan G; Li JJ; Pinello L
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. QuadST: A Powerful and Robust Approach for Identifying Cell-Cell Interaction-Changed Genes on Spatially Resolved Transcriptomics.
    Choi J; Ehrlich ME; Roussos P; Wang P; Yuan GC; Song X
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods.
    Charitakis N; Salim A; Piers AT; Watt KI; Porrello ER; Elliott DA; Ramialison M
    Genome Biol; 2023 Sep; 24(1):209. PubMed ID: 37723583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics.
    Atta L; Clifton K; Anant M; Aihara G; Fan J
    bioRxiv; 2024 Mar; ():. PubMed ID: 37693542
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Museum of spatial transcriptomics.
    Moses L; Pachter L
    Nat Methods; 2022 May; 19(5):534-546. PubMed ID: 35273392
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial transcriptomics: new dimension of understanding biological complexity.
    Li Z; Peng G
    Biophys Rep; 2022 Jun; 8(3):119-135. PubMed ID: 37288247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies.
    Guo T; Yuan Z; Pan Y; Wang J; Chen F; Zhang MQ; Li X
    Genome Biol; 2023 Oct; 24(1):241. PubMed ID: 37864231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DeST-OT: Alignment of Spatiotemporal Transcriptomics Data.
    Halmos P; Liu X; Gold J; Chen F; Ding L; Raphael BJ
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Confero: an integrated contrast data and gene set platform for computational analysis and biological interpretation of omics data.
    Hermida L; Poussin C; Stadler MB; Gubian S; Sewer A; Gaidatzis D; Hotz HR; Martin F; Belcastro V; Cano S; Peitsch MC; Hoeng J
    BMC Genomics; 2013 Jul; 14():514. PubMed ID: 23895370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NoVaTeST: identifying genes with location-dependent noise variance in spatial transcriptomics data.
    Abrar MA; Kaykobad M; Rahman MS; Samee MAH
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37285319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Challenges and Opportunities for the Clinical Translation of Spatial Transcriptomics Technologies.
    Smith KD; Prince DK; MacDonald JW; Bammler TK; Akilesh S
    Glomerular Dis; 2024; 4(1):49-63. PubMed ID: 38600956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MUSTANG: Multi-sample spatial transcriptomics data analysis with cross-sample transcriptional similarity guidance.
    Niyakan S; Sheng J; Cao Y; Zhang X; Xu Z; Wu L; Wong STC; Qian X
    Patterns (N Y); 2024 May; 5(5):100986. PubMed ID: 38800365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in spatially variable gene detection in spatial transcriptomics.
    Das Adhikari S; Yang J; Wang J; Cui Y
    Comput Struct Biotechnol J; 2024 Dec; 23():883-891. PubMed ID: 38370977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data.
    Tiesmeyer S; Sahay S; Müller-Bötticher N; Eils R; Mackowiak SD; Ishaque N
    Front Genet; 2022; 13():785877. PubMed ID: 35295943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling zero inflation is not necessary for spatial transcriptomics.
    Zhao P; Zhu J; Ma Y; Zhou X
    Genome Biol; 2022 May; 23(1):118. PubMed ID: 35585605
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.