These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36945650)

  • 61. Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants.
    Gurazada SGR; Cox KL; Czymmek KJ; Meyers BC
    Emerg Top Life Sci; 2021 May; 5(2):179-188. PubMed ID: 33522561
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning.
    Zuo C; Zhang Y; Cao C; Feng J; Jiao M; Chen L
    Nat Commun; 2022 Oct; 13(1):5962. PubMed ID: 36216831
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Bayesian modified Ising model for identifying spatially variable genes from spatial transcriptomics data.
    Jiang X; Xiao G; Li Q
    Stat Med; 2022 Oct; 41(23):4647-4665. PubMed ID: 35871762
    [TBL] [Abstract][Full Text] [Related]  

  • 64. SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data.
    Tiesmeyer S; Sahay S; Müller-Bötticher N; Eils R; Mackowiak SD; Ishaque N
    Front Genet; 2022; 13():785877. PubMed ID: 35295943
    [TBL] [Abstract][Full Text] [Related]  

  • 65. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing.
    Sun D; Liu Z; Li T; Wu Q; Wang C
    Nucleic Acids Res; 2022 Apr; 50(7):e42. PubMed ID: 35253896
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics.
    Liao J; Lu X; Shao X; Zhu L; Fan X
    Trends Biotechnol; 2021 Jan; 39(1):43-58. PubMed ID: 32505359
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
    Clifton K; Anant M; Aihara G; Atta L; Aimiuwu OK; Kebschull JM; Miller MI; Tward D; Fan J
    bioRxiv; 2023 Aug; ():. PubMed ID: 37090640
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spatially resolved transcriptomics in immersive environments.
    Bienroth D; Nim HT; Garkov D; Klein K; Jaeger-Honz S; Ramialison M; Schreiber F
    Vis Comput Ind Biomed Art; 2022 Jan; 5(1):2. PubMed ID: 35001220
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis.
    Xu Y; McCord RP
    BMC Bioinformatics; 2021 Aug; 22(1):397. PubMed ID: 34372758
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A unified pipeline for FISH spatial transcriptomics.
    Cisar C; Keener N; Ruffalo M; Paten B
    Cell Genom; 2023 Sep; 3(9):100384. PubMed ID: 37719153
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sprod for de-noising spatially resolved transcriptomics data based on position and image information.
    Wang Y; Song B; Wang S; Chen M; Xie Y; Xiao G; Wang L; Wang T
    Nat Methods; 2022 Aug; 19(8):950-958. PubMed ID: 35927477
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spaco: A comprehensive tool for coloring spatial data at single-cell resolution.
    Jing Z; Zhu Q; Li L; Xie Y; Wu X; Fang Q; Yang B; Dai B; Xu X; Pan H; Bai Y
    Patterns (N Y); 2024 Mar; 5(3):100915. PubMed ID: 38487801
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatially resolved transcriptomics and its applications in cancer.
    Maniatis S; Petrescu J; Phatnani H
    Curr Opin Genet Dev; 2021 Feb; 66():70-77. PubMed ID: 33434721
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mapping the topography of spatial gene expression with interpretable deep learning.
    Chitra U; Arnold BJ; Sarkar H; Ma C; Lopez-Darwin S; Sanno K; Raphael BJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873258
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Categorization of 33 computational methods to detect spatially variable genes from spatially resolved transcriptomics data.
    Yan G; Hua SH; Li JJ
    ArXiv; 2024 Oct; ():. PubMed ID: 38855546
    [TBL] [Abstract][Full Text] [Related]  

  • 79. IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis.
    Zhang F; Drabier R
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S7. PubMed ID: 23046449
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Detection of differentially expressed genes in spatial transcriptomics data by spatial analysis of spatial transcriptomics: A novel method based on spatial statistics.
    Qiu Z; Li S; Luo M; Zhu S; Wang Z; Jiang Y
    Front Neurosci; 2022; 16():1086168. PubMed ID: 36523429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.