These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36946089)

  • 21. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of foot posture on the cost of transport in humans.
    Cunningham CB; Schilling N; Anders C; Carrier DR
    J Exp Biol; 2010 Mar; 213(5):790-7. PubMed ID: 20154195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The advantages of a rolling foot in human walking.
    Adamczyk PG; Collins SH; Kuo AD
    J Exp Biol; 2006 Oct; 209(Pt 20):3953-63. PubMed ID: 17023589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intentional on-line adaptation of stride length in human walking.
    Varraine E; Bonnard M; Pailhous J
    Exp Brain Res; 2000 Jan; 130(2):248-57. PubMed ID: 10672479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.
    Silverman AK; Neptune RR
    J Biomech; 2014 Aug; 47(11):2556-62. PubMed ID: 24972921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of voluntary toe-walking on body propulsion.
    Riley PO; Kerrigan DC
    Clin Biomech (Bristol); 2001 Oct; 16(8):681-7. PubMed ID: 11535349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
    Ivanenko YP; Grasso R; Macellari V; Lacquaniti F
    J Neurophysiol; 2002 Jun; 87(6):3070-89. PubMed ID: 12037209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis.
    Fey NP; Klute GK; Neptune RR
    J Biomech; 2013 Feb; 46(4):637-44. PubMed ID: 23312827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of human walking: a planar model for single support.
    Pandy MG; Berme N
    J Biomech; 1988; 21(12):1053-60. PubMed ID: 2577951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The high cost of swing leg circumduction during human walking.
    Shorter KA; Wu A; Kuo AD
    Gait Posture; 2017 May; 54():265-270. PubMed ID: 28371740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Individuals with multiple sclerosis redistribute positive mechanical work from the ankle to the hip during walking.
    Davies BL; Hoffman RM; Kurz MJ
    Gait Posture; 2016 Sep; 49():329-333. PubMed ID: 27479218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications.
    Usherwood JR; Williams SB; Wilson AM
    J Exp Biol; 2007 Feb; 210(Pt 3):533-40. PubMed ID: 17234623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Movement coordination patterns between the foot joints during walking.
    Arnold JB; Caravaggi P; Fraysse F; Thewlis D; Leardini A
    J Foot Ankle Res; 2017; 10():47. PubMed ID: 29093757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.