These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36946122)

  • 1. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels.
    Ghodsi SM; Anand S; Shahbazian-Yassar R; Shokuhfar T; Megaridis CM
    ACS Nano; 2019 Apr; 13(4):4677-4685. PubMed ID: 30908009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of ice nucleation events on individual atmospheric particles.
    Wang B; Knopf DA; China S; Arey BW; Harder TH; Gilles MK; Laskin A
    Phys Chem Chem Phys; 2016 Nov; 18(43):29721-29731. PubMed ID: 27722496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens.
    Cho H; Jones MR; Nguyen SC; Hauwiller MR; Zettl A; Alivisatos AP
    Nano Lett; 2017 Jan; 17(1):414-420. PubMed ID: 28026186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing the formation of ice and organic crystals in active sites.
    Campbell JM; Meldrum FC; Christenson HK
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):810-815. PubMed ID: 27994140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
    Zhang Z; Guo GJ
    Phys Chem Chem Phys; 2017 Jul; 19(29):19496-19505. PubMed ID: 28719672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and growth of water ice on oxide surfaces: the influence of a precursor to water dissociation.
    Souda R; Aizawa T; Sugiyama N; Takeguchi M
    Phys Chem Chem Phys; 2020 Sep; 22(36):20515-20523. PubMed ID: 32966413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of Homogeneous Ice Nucleation by Soluble Molecules.
    Mochizuki K; Qiu Y; Molinero V
    J Am Chem Soc; 2017 Nov; 139(47):17003-17006. PubMed ID: 29111694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling the origins of ice nucleation on organic crystals.
    Sosso GC; Whale TF; Holden MA; Pedevilla P; Murray BJ; Michaelides A
    Chem Sci; 2018 Nov; 9(42):8077-8088. PubMed ID: 30542556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking cubic ice at molecular resolution.
    Huang X; Wang L; Liu K; Liao L; Sun H; Wang J; Tian X; Xu Z; Wang W; Liu L; Jiang Y; Chen J; Wang E; Bai X
    Nature; 2023 May; 617(7959):86-91. PubMed ID: 36991124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel as a modifier of calcium oxalate: an
    Sorokina LV; Phakatkar AH; Rehak PL; Král P; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2024 Feb; 16(8):4266-4274. PubMed ID: 38348770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution observation of nucleation and growth behavior of nanomaterials using a graphene template.
    Jo J; Yoo H; Park SI; Park JB; Yoon S; Kim M; Yi GC
    Adv Mater; 2014 Apr; 26(13):2011-5. PubMed ID: 24478255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.
    Nguyen AH; Molinero V
    J Phys Chem B; 2015 Jul; 119(29):9369-76. PubMed ID: 25389702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice Nucleation Promotion Impact on the Ice Recrystallization Inhibition Activity of Polyols.
    Mousazadehkasin M; Mitchell N; Asenath-Smith E; Tsavalas JG
    Biomacromolecules; 2023 Feb; 24(2):678-689. PubMed ID: 36648113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.