These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36946246)

  • 1. ESTIMATION OF THE GAMMA-RAY FIELD IN AIR FROM RADIOACTIVE SOURCES IN THE GROUND BY NUMERICAL SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION.
    Askri B; Manai K; Bouzouita A; Zaidi E; Trabelsi A
    Radiat Prot Dosimetry; 2023 May; 199(7):631-645. PubMed ID: 36946246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).
    Jansen JT; Zoetelief J
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):428-32. PubMed ID: 16604673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil.
    Clouvas A; Xanthos S; Antonopoulos-Domis M; Silva J
    Health Phys; 2000 Mar; 78(3):295-302. PubMed ID: 10688452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.
    Askri B; Manai K; Trabelsi A; Baccari B
    Radiat Prot Dosimetry; 2008; 128(3):279-88. PubMed ID: 17959610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method.
    Norris ET; Liu X; Hsieh J
    Med Phys; 2015 Jul; 42(7):4080-7. PubMed ID: 26133608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MODELLING AND SIMULATION FOR RADIOLOGICAL DOSE ASSESSMENT OF PSAMMOTHERAPY AND CLIMATOTHERPY.
    Allam KA
    Radiat Prot Dosimetry; 2020 Jun; 188(3):276-284. PubMed ID: 31950155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrations and consequent radiation doses of uranium-238, thorium-232 and potassium-40 contained in the front glass of CRTs.
    Yamamoto H; Norimura T; Katase A
    J UOEH; 2000 Jun; 22(2):133-46. PubMed ID: 10862408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic linear Boltzmann transport equation solver for patient-specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models.
    Principi S; Wang A; Maslowski A; Wareing T; Jordan P; Schmidt TG
    Med Phys; 2020 Dec; 47(12):6470-6483. PubMed ID: 32981038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry.
    Kannan V; Rajan MP; Iyenga MA; Ramesh R
    Appl Radiat Isot; 2002 Jul; 57(1):109-19. PubMed ID: 12137019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HUMAN EXPOSURE TO BACKGROUND RADIATION IN ORTUM, KENYA.
    Wanjala FO; Hashim NO; Otwoma D; Nyambura C; Kebwaro J; Mauring A; Bartilol J; Chege M
    Radiat Prot Dosimetry; 2020 Jun; 188(1):98-108. PubMed ID: 31786611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma spectrometry of 234Th (238U) in environmental samples.
    El-Daoushy F; Hernández F
    Analyst; 2002 Jul; 127(7):981-9. PubMed ID: 12173662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ gamma-spectrometry several years after deposition of radiocesium. II. Peak-to-valley method.
    Gering F; Hillmann U; Jacob P; Fehrenbacher G
    Radiat Environ Biophys; 1998 Dec; 37(4):283-91. PubMed ID: 10052678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory.
    Breier R; Brudanin VB; Loaiza P; Piquemal F; Povinec PP; Rukhadze E; Rukhadze N; Štekl I
    J Environ Radioact; 2018 Oct; 190-191():134-140. PubMed ID: 29793183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in cyprus.
    Tzortzis M; Svoukis E; Tsertos H
    Radiat Prot Dosimetry; 2004; 109(3):217-24. PubMed ID: 15254326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and distribution of natural radioactivity in wheat plants from soil.
    Pulhani VA; Dafauti S; Hegde AG; Sharma RM; Mishra UC
    J Environ Radioact; 2005; 79(3):331-46. PubMed ID: 15607519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities.
    Lloyd SA; Ansbacher W
    Med Phys; 2013 Jan; 40(1):011707. PubMed ID: 23298077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ASSESSMENT OF GAMMA DOSE AND ANNUAL EFFECTIVE DOSE RATE FOR COMMONLY USED FERTILIZER SAMPLES IN AGRICULTURE FIELD WITH A STATISTICAL APPROACH.
    Tamilarasi A; Sathish V; Chandrasekaran A
    Radiat Prot Dosimetry; 2023 Feb; 199(2):95-106. PubMed ID: 36426758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.