These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36946280)

  • 1. Strain-induced dark exciton generation in rippled monolayer MoS
    Lee SY; Yun WS; Lee JD
    Phys Chem Chem Phys; 2023 Apr; 25(14):9894-9900. PubMed ID: 36946280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the spin-forbidden dark excitons in MoS
    Robert C; Han B; Kapuscinski P; Delhomme A; Faugeras C; Amand T; Molas MR; Bartos M; Watanabe K; Taniguchi T; Urbaszek B; Potemski M; Marie X
    Nat Commun; 2020 Aug; 11(1):4037. PubMed ID: 32788704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanocavity Induced Coupling and Boost of Dark Excitons in Monolayer WSe
    Lo TW; Chen X; Zhang Z; Zhang Q; Leung CW; Zayats AV; Lei D
    Nano Lett; 2022 Mar; 22(5):1915-1921. PubMed ID: 35225629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Band Splitting and Spin-Flip Dynamics in Monolayer MoS
    Chi Z; Wei Z; Zhang G; Chen H; Weng YX
    J Phys Chem Lett; 2023 Nov; 14(43):9640-9645. PubMed ID: 37870497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast many-body bright-dark exciton transition in anatase TiO
    Wang A; Jiang X; Zheng Q; Petek H; Zhao J
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2307671120. PubMed ID: 37956295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of Dark Excitons in Semiconductor Monolayers for High-Sensitivity Strain Sensing.
    Chand SB; Woods JM; Mejia E; Taniguchi T; Watanabe K; Grosso G
    Nano Lett; 2022 Apr; 22(7):3087-3094. PubMed ID: 35290068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic brightening and control of dark excitons in monolayer WSe
    Zhang XX; Cao T; Lu Z; Lin YC; Zhang F; Wang Y; Li Z; Hone JC; Robinson JA; Smirnov D; Louie SG; Heinz TF
    Nat Nanotechnol; 2017 Sep; 12(9):883-888. PubMed ID: 28650442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Measurement of the Radiative Pattern of Bright and Dark Excitons and Exciton Complexes in Encapsulated Tungsten Diselenide.
    Schneider LM; Esdaille SS; Rhodes DA; Barmak K; Hone JC; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8091. PubMed ID: 32415183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
    Palummo M; Bernardi M; Grossman JC
    Nano Lett; 2015 May; 15(5):2794-800. PubMed ID: 25798735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Evidence for Dark Excitons in Monolayer WSe_{2}.
    Zhang XX; You Y; Zhao SY; Heinz TF
    Phys Rev Lett; 2015 Dec; 115(25):257403. PubMed ID: 26722944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upconversion of Light into Bright Intravalley Excitons via Dark Intervalley Excitons in hBN-Encapsulated WSe
    Jadczak J; Glazov M; Kutrowska-Girzycka J; Schindler JJ; Debus J; Ho CH; Watanabe K; Taniguchi T; Bayer M; Bryja L
    ACS Nano; 2021 Dec; 15(12):19165-19174. PubMed ID: 34735768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of 2D semiconductor P-type dark-exciton lifetime using two-photon ultrafast spectroscopy.
    Panna D; Balasubramanian K; Khatei J; Rybak L; Slobodkin Y; Steinberg H; Hayat A
    Opt Express; 2019 Nov; 27(23):33427-33435. PubMed ID: 31878412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up- and Down-Conversion between Intra- and Intervalley Excitons in Waveguide Coupled Monolayer WSe
    Wu YC; Samudrala S; McClung A; Taniguchi T; Watanabe K; Arbabi A; Yan J
    ACS Nano; 2020 Aug; 14(8):10503-10509. PubMed ID: 32687318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitonic Complexes in n-Doped WS
    Zinkiewicz M; Woźniak T; Kazimierczuk T; Kapuscinski P; Oreszczuk K; Grzeszczyk M; Bartoš M; Nogajewski K; Watanabe K; Taniguchi T; Faugeras C; Kossacki P; Potemski M; Babiński A; Molas MR
    Nano Lett; 2021 Mar; 21(6):2519-2525. PubMed ID: 33683895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of localized excitons in strained monolayer WSe
    Jiang J; Pachter R
    Nanoscale; 2022 Aug; 14(31):11378-11387. PubMed ID: 35899773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe
    Peng GH; Lo PY; Li WH; Huang YC; Chen YH; Lee CH; Yang CK; Cheng SJ
    Nano Lett; 2019 Apr; 19(4):2299-2312. PubMed ID: 30860847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton Lifetime and Optical Line Width Profile via Exciton-Phonon Interactions: Theory and First-Principles Calculations for Monolayer MoS
    Chan YH; Haber JB; Naik MH; Neaton JB; Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2023 May; 23(9):3971-3977. PubMed ID: 37071728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.