These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36946337)
1. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing reactive oxygen species, endoplasmic reticulum stress, and Pannexin-1-mediated ferroptosis. Sun J; Xu J; Liu Y; Lin Y; Wang F; Han Y; Zhang S; Gao X; Xu C; Yuan H Biomol Biomed; 2023 Sep; 23(5):825-837. PubMed ID: 36946337 [TBL] [Abstract][Full Text] [Related]
2. Exogenous Spermidine Alleviates Diabetic Myocardial Fibrosis Via Suppressing Inflammation and Pyroptosis in db/db Mice. Wei C; Xu J; Liu Y; Qadir J; Zhang S; Yuan H Balkan Med J; 2023 Sep; 40(5):333-343. PubMed ID: 37350700 [TBL] [Abstract][Full Text] [Related]
3. Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway. Hu J; Lu X; Zhang X; Shao X; Wang Y; Chen J; Zhao B; Li S; Xu C; Wei C Cell Biol Int; 2020 Aug; 44(8):1660-1670. PubMed ID: 32304136 [TBL] [Abstract][Full Text] [Related]
4. Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Wang J; Li S; Wang J; Wu F; Chen Y; Zhang H; Guo Y; Lin Y; Li L; Yu X; Liu T; Zhao Y Aging (Albany NY); 2020 Jan; 12(1):650-671. PubMed ID: 31907336 [TBL] [Abstract][Full Text] [Related]
5. Exogenous spermine attenuates rat diabetic cardiomyopathy via suppressing ROS-p53 mediated downregulation of calcium-sensitive receptor. Wang Y; Chen J; Li S; Zhang X; Guo Z; Hu J; Shao X; Song N; Zhao Y; Li H; Yang G; Xu C; Wei C Redox Biol; 2020 May; 32():101514. PubMed ID: 32234613 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Liu ZW; Zhu HT; Chen KL; Dong X; Wei J; Qiu C; Xue JH Cardiovasc Diabetol; 2013 Nov; 12():158. PubMed ID: 24180212 [TBL] [Abstract][Full Text] [Related]
7. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Du S; Shi H; Xiong L; Wang P; Shi Y Front Endocrinol (Lausanne); 2022; 13():1011669. PubMed ID: 36313744 [TBL] [Abstract][Full Text] [Related]
8. Downregulation of the (pro)renin receptor alleviates ferroptosis-associated cardiac pathological changes via the NCOA 4-mediated ferritinophagy pathway in diabetic cardiomyopathy. Zhang X; Dong X; Jie H; Li S; Li H; Su Y; Li L; Kang L; Dong B; Zhang Y Int Immunopharmacol; 2024 Sep; 138():112605. PubMed ID: 38963979 [TBL] [Abstract][Full Text] [Related]
9. Ferroptosis: roles and molecular mechanisms in diabetic cardiomyopathy. Zhao Y; Pan B; Lv X; Chen C; Li K; Wang Y; Liu J Front Endocrinol (Lausanne); 2023; 14():1140644. PubMed ID: 37152931 [TBL] [Abstract][Full Text] [Related]
10. Tanshinone IIA ameliorates experimental diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress in cardiomyocytes via SIRT1. Wu S; Lu D; Gajendran B; Hu Q; Zhang J; Wang S; Han M; Xu Y; Shen X Phytother Res; 2023 Aug; 37(8):3543-3558. PubMed ID: 37128721 [TBL] [Abstract][Full Text] [Related]
11. Matrine improves diabetic cardiomyopathy through TGF-β-induced protein kinase RNA-like endoplasmic reticulum kinase signaling pathway. Hou H; Zhang Q; Dong H; Ge Z J Cell Biochem; 2019 Aug; 120(8):13573-13582. PubMed ID: 30938856 [TBL] [Abstract][Full Text] [Related]
12. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N‑acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. He Y; Zhou L; Fan Z; Liu S; Fang W Cell Death Dis; 2018 May; 9(5):568. PubMed ID: 29752433 [TBL] [Abstract][Full Text] [Related]
13. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Lou X; Zhang Y; Guo J; Gao L; Ding Y; Zhuo X; Lei Q; Bian J; Lei R; Gong W; Zhang X; Jiao Q Heart Fail Rev; 2024 Jan; 29(1):1-11. PubMed ID: 37555989 [TBL] [Abstract][Full Text] [Related]
14. Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury Through Endoplasmic Reticulum Stress. Li W; Li W; Leng Y; Xiong Y; Xia Z DNA Cell Biol; 2020 Feb; 39(2):210-225. PubMed ID: 31809190 [TBL] [Abstract][Full Text] [Related]
15. Beneficial Effects of Echinacoside on Diabetic Cardiomyopathy in Diabetic Zhang X; Hao Y Drug Des Devel Ther; 2020; 14():5575-5587. PubMed ID: 33376302 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Ni R; Cao T; Xiong S; Ma J; Fan GC; Lacefield JC; Lu Y; Le Tissier S; Peng T Free Radic Biol Med; 2016 Jan; 90():12-23. PubMed ID: 26577173 [TBL] [Abstract][Full Text] [Related]
17. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Parvin S; Lee OR; Sathiyaraj G; Khorolragchaa A; Kim YJ; Yang DC Gene; 2014 Mar; 537(1):70-8. PubMed ID: 24365592 [TBL] [Abstract][Full Text] [Related]
18. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress. Lin C; Guo Y; Xia Y; Li C; Xu X; Qi T; Zhang F; Fan M; Hu G; Zhao H; Zhao H; Liu R; Gao E; Yan W; Tao L J Mol Cell Cardiol; 2021 Nov; 160():27-41. PubMed ID: 34224725 [TBL] [Abstract][Full Text] [Related]
19. Silencing of peroxisome proliferator-activated receptor-alpha alleviates myocardial injury in diabetic cardiomyopathy by downregulating 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 expression. Wang L; Bi X; Han J IUBMB Life; 2020 Sep; 72(9):1997-2009. PubMed ID: 32734614 [TBL] [Abstract][Full Text] [Related]
20. D-pinitol alleviates diabetic cardiomyopathy by inhibiting the optineurin-mediated endoplasmic reticulum stress and glycophagy signaling pathway. Li X; Yu X; Yu F; Fu C; Zhao W; Liu X; Dai C; Gao H; Cheng M; Li B Phytother Res; 2024 Mar; 38(3):1681-1694. PubMed ID: 38311336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]