These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36946514)

  • 1. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training.
    Lin Z; Yin S; Shi L; Zhou W; Zhang YJ
    J Chem Inf Model; 2023 Apr; 63(7):1894-1905. PubMed ID: 36946514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
    Tetko IV; Karpov P; Van Deursen R; Godin G
    Nat Commun; 2020 Nov; 11(1):5575. PubMed ID: 33149154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based two-branch multi-scale feature extraction network for retrosynthesis prediction.
    Yang F; Liu J; Zhang Q; Yang Z; Zhang X
    BMC Bioinformatics; 2022 Sep; 23(1):362. PubMed ID: 36056300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Node-Aligned Graph-to-Graph: Elevating Template-free Deep Learning Approaches in Single-Step Retrosynthesis.
    Yao L; Guo W; Wang Z; Xiang S; Liu W; Ke G
    JACS Au; 2024 Mar; 4(3):992-1003. PubMed ID: 38559728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph Transformer Networks: Learning meta-path graphs to improve GNNs.
    Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ
    Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular property prediction based on graph structure learning.
    Zhao B; Xu W; Guan J; Zhou S
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-MGCL: Molecule Graph Contrastive Learning Based on Transformer for Molecular Property Prediction.
    Guan X; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3851-3862. PubMed ID: 37856269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking.
    Li J; Fang L; Lou JG
    J Cheminform; 2023 Jun; 15(1):58. PubMed ID: 37291642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits.
    Sacha M; Błaż M; Byrski P; Dąbrowski-Tumański P; Chromiński M; Loska R; Włodarczyk-Pruszyński P; Jastrzębski S
    J Chem Inf Model; 2021 Jul; 61(7):3273-3284. PubMed ID: 34251814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction.
    Yan J; Qu W; Li X; Wang R; Tan J
    Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MS-BACL: enhancing metabolic stability prediction through bond graph augmentation and contrastive learning.
    Wang T; Li Z; Zhuo L; Chen Y; Fu X; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38555479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks.
    Seidl P; Renz P; Dyubankova N; Neves P; Verhoeven J; Wegner JK; Segler M; Hochreiter S; Klambauer G
    J Chem Inf Model; 2022 May; 62(9):2111-2120. PubMed ID: 35034452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient curriculum learning-based strategy for molecular graph learning.
    Gu Y; Zheng S; Xu Z; Yin Q; Li L; Li J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35368074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.