These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36946715)
1. A stochastic predator-prey model with two competitive preys and Ornstein-Uhlenbeck process. Liu Q J Biol Dyn; 2023 Dec; 17(1):2193211. PubMed ID: 36946715 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation. Li C; Shi P J Biol Dyn; 2024 Dec; 18(1):2366495. PubMed ID: 38899433 [TBL] [Abstract][Full Text] [Related]
3. A stochastic predator-prey model with Holling II increasing function in the predator. Huang Y; Shi W; Wei C; Zhang S J Biol Dyn; 2021 Dec; 15(1):1-18. PubMed ID: 33357105 [TBL] [Abstract][Full Text] [Related]
4. Stationary distribution and global stability of stochastic predator-prey model with disease in prey population. Gokila C; Sambath M; Balachandran K; Ma YK J Biol Dyn; 2023 Dec; 17(1):2164803. PubMed ID: 36648149 [TBL] [Abstract][Full Text] [Related]
5. Dynamical analysis of a stochastic maize streak virus epidemic model with logarithmic Ornstein-Uhlenbeck process. Liu Q J Math Biol; 2024 Jul; 89(3):30. PubMed ID: 39017723 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Stochastic SIRC Model with Cross Immunity Based on Ornstein-Uhlenbeck Process. Ni Z; Jiang D; Cao Z; Mu X Qual Theory Dyn Syst; 2023; 22(3):87. PubMed ID: 37124841 [TBL] [Abstract][Full Text] [Related]
7. Stochastic modeling of SIS epidemics with logarithmic Ornstein-Uhlenbeck process and generalized nonlinear incidence. Shi Z; Jiang D Math Biosci; 2023 Nov; 365():109083. PubMed ID: 37776947 [TBL] [Abstract][Full Text] [Related]
8. Dynamical analysis of a modified Leslie-Gower Holling-type II predator-prey stochastic model in polluted environments with interspecific competition and impulsive toxicant input. Gao Y; Yao S J Biol Dyn; 2022 Dec; 16(1):840-858. PubMed ID: 36515706 [TBL] [Abstract][Full Text] [Related]
9. Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ predator-prey stochastic model in polluted environments with impulsive toxicant input. Gao Y; Yao S Math Biosci Eng; 2021 Jun; 18(4):4894-4918. PubMed ID: 34198471 [TBL] [Abstract][Full Text] [Related]
10. Analysis of stochastic disease including predator-prey model with fear factor and Lévy jump. He X; Liu M; Xu X Math Biosci Eng; 2023 Jan; 20(2):1750-1773. PubMed ID: 36899507 [TBL] [Abstract][Full Text] [Related]
11. Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Pei Y; Liu B; Qi H Math Biosci Eng; 2022 Sep; 19(12):13062-13078. PubMed ID: 36654035 [TBL] [Abstract][Full Text] [Related]
12. Survival analysis of a stochastic predator-prey model with prey refuge and fear effect. Xia Y; Yuan S J Biol Dyn; 2020 Dec; 14(1):871-892. PubMed ID: 33269648 [TBL] [Abstract][Full Text] [Related]
13. Dynamic behaviors of a stochastic virus infection model with Beddington-DeAngelis incidence function, eclipse-stage and Ornstein-Uhlenbeck process. Liu Y; Wang Y; Jiang D Math Biosci; 2024 Mar; 369():109154. PubMed ID: 38295988 [TBL] [Abstract][Full Text] [Related]
14. A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps. Gao M; Ai X Math Biosci Eng; 2024 Feb; 21(3):4117-4141. PubMed ID: 38549321 [TBL] [Abstract][Full Text] [Related]
15. Dynamical behaviors of a Lotka-Volterra competition system with the Ornstein-Uhlenbeck process. Wei H; Li W Math Biosci Eng; 2023 Feb; 20(5):7882-7904. PubMed ID: 37161177 [TBL] [Abstract][Full Text] [Related]
16. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting. Trajanovski P; Jolakoski P; Zelenkovski K; Iomin A; Kocarev L; Sandev T Phys Rev E; 2023 May; 107(5-1):054129. PubMed ID: 37328979 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a stochastic SIB cholera model with saturation recovery rate and Ornstein-Uhlenbeck process. Wen B; Liu B; Cui Q Math Biosci Eng; 2023 May; 20(7):11644-11655. PubMed ID: 37501413 [TBL] [Abstract][Full Text] [Related]
18. Persistence and extinction of a modified Leslie-Gower Holling-type II two-predator one-prey model with Lévy jumps. Gao Y; Yang F J Biol Dyn; 2022 Dec; 16(1):117-143. PubMed ID: 35285782 [TBL] [Abstract][Full Text] [Related]
19. Global dynamics and optimal harvesting in a stochastic two-predators one-prey system with distributed delays and Lévy noise. Tuerxun N; Abdurahman X; Teng Z J Biol Dyn; 2020 Dec; 14(1):32-56. PubMed ID: 31894726 [TBL] [Abstract][Full Text] [Related]
20. Stochastic analysis of the Lotka-Volterra model for ecosystems. Cai GQ; Lin YK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]