These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36946727)
1. Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin Deacetylases and Other Glycoproteins. Ma LS; Tsai WL; Damei FA; Kalunke RM; Xu MY; Lin YH; Lee HC mBio; 2023 Apr; 14(2):e0009323. PubMed ID: 36946727 [TBL] [Abstract][Full Text] [Related]
2. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
3. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. Bormann C; Baier D; Hörr I; Raps C; Berger J; Jung G; Schwarz H J Bacteriol; 1999 Dec; 181(24):7421-9. PubMed ID: 10601197 [TBL] [Abstract][Full Text] [Related]
5. Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TU901. Campos-Olivas R; Hörr I; Bormann C; Jung G; Gronenborn AM J Mol Biol; 2001 May; 308(4):765-82. PubMed ID: 11350173 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary analysis and protein family classification of chitin deacetylases in Cryptococcus neoformans. Lee S; Kang HA; Eyun SI J Microbiol; 2020 Sep; 58(9):805-811. PubMed ID: 32870486 [TBL] [Abstract][Full Text] [Related]
7. Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis. Upadhya R; Baker LG; Lam WC; Specht CA; Donlin MJ; Lodge JK mBio; 2018 Nov; 9(6):. PubMed ID: 30459196 [TBL] [Abstract][Full Text] [Related]
8. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Mandal SM; Porto WF; Dey P; Maiti MK; Ghosh AK; Franco OL Biochimie; 2013 Oct; 95(10):1939-48. PubMed ID: 23835303 [TBL] [Abstract][Full Text] [Related]
9. What Are the Functions of Chitin Deacetylases in Mouyna I; Dellière S; Beauvais A; Gravelat F; Snarr B; Lehoux M; Zacharias C; Sun Y; de Jesus Carrion S; Pearlman E; Sheppard DC; Latgé JP Front Cell Infect Microbiol; 2020; 10():28. PubMed ID: 32117802 [TBL] [Abstract][Full Text] [Related]
10. Chitosan Biosynthesis and Virulence in the Human Fungal Pathogen Cryptococcus gattii. Lam WC; Upadhya R; Specht CA; Ragsdale AE; Hole CR; Levitz SM; Lodge JK mSphere; 2019 Oct; 4(5):. PubMed ID: 31597720 [No Abstract] [Full Text] [Related]
11. Identification of O-mannosylated virulence factors in Ustilago maydis. Fernández-Álvarez A; Marín-Menguiano M; Lanver D; Jiménez-Martín A; Elías-Villalobos A; Pérez-Pulido AJ; Kahmann R; Ibeas JI PLoS Pathog; 2012; 8(3):e1002563. PubMed ID: 22416226 [TBL] [Abstract][Full Text] [Related]
12. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. Ökmen B; Kemmerich B; Hilbig D; Wemhöner R; Aschenbroich J; Perrar A; Huesgen PF; Schipper K; Doehlemann G New Phytol; 2018 Oct; 220(1):249-261. PubMed ID: 29916208 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. Tong S; Li M; Keyhani NO; Liu Y; Yuan M; Lin D; Jin D; Li X; Pei Y; Fan Y PLoS Pathog; 2020 Apr; 16(4):e1008518. PubMed ID: 32324832 [TBL] [Abstract][Full Text] [Related]
14. Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. Castillo-Lluva S; Alvarez-Tabarés I; Weber I; Steinberg G; Pérez-Martín J J Cell Sci; 2007 May; 120(Pt 9):1584-95. PubMed ID: 17405809 [TBL] [Abstract][Full Text] [Related]
15. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Banks IR; Specht CA; Donlin MJ; Gerik KJ; Levitz SM; Lodge JK Eukaryot Cell; 2005 Nov; 4(11):1902-12. PubMed ID: 16278457 [TBL] [Abstract][Full Text] [Related]
16. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Treitschke S; Doehlemann G; Schuster M; Steinberg G Plant Cell; 2010 Jul; 22(7):2476-94. PubMed ID: 20663961 [TBL] [Abstract][Full Text] [Related]
17. Cryptococcus neoformans Chitin Synthase 3 Plays a Critical Role in Dampening Host Inflammatory Responses. Hole CR; Lam WC; Upadhya R; Lodge JK mBio; 2020 Feb; 11(1):. PubMed ID: 32071275 [No Abstract] [Full Text] [Related]
19. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Weber I; Assmann D; Thines E; Steinberg G Plant Cell; 2006 Jan; 18(1):225-42. PubMed ID: 16314447 [TBL] [Abstract][Full Text] [Related]
20. Chitosan resistance by the deletion of the putative high affinity glucose transporter in the yeast Ustilago maydis. Olicón-Hernández DR; Araiza-Villanueva MG; Vázquez-Carrada M; Guerra-Sánchez G Carbohydr Res; 2021 Jul; 505():108335. PubMed ID: 33989946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]