These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36946956)

  • 1. Physics-model-based neural networks for inverse design of binary phase planar diffractive lenses.
    He J; Guo Z; Zhang Y; Lu Y; Wen F; Da H; Zhou G; Yuan D; Ye H
    Opt Lett; 2023 Mar; 48(6):1474-1477. PubMed ID: 36946956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.
    Huang K; Qin F; Liu H; Ye H; Qiu CW; Hong M; Luk'yanchuk B; Teng J
    Adv Mater; 2018 Jun; 30(26):e1704556. PubMed ID: 29672949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse design of ultracompact multi-focal optical devices by diffractive neural networks.
    Chen Y; Zhu Y; Britton WA; Dal Negro L
    Opt Lett; 2022 Jun; 47(11):2842-2845. PubMed ID: 35648944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractive lens design for optimized focusing.
    Wan X; Shen B; Menon R
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):B27-33. PubMed ID: 25606777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of ultracompact broadband focusing spectrometers based on diffractive optical networks.
    Zhu Y; Chen Y; Dal Negro L
    Opt Lett; 2022 Dec; 47(24):6309-6312. PubMed ID: 36538425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication.
    Li W; Yu Y; Yuan W
    Nanoscale; 2018 Dec; 11(1):311-320. PubMed ID: 30534750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles.
    Diao J; Yuan W; Yu Y; Zhu Y; Wu Y
    Opt Express; 2016 Feb; 24(3):1924-33. PubMed ID: 26906769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffractive deep neural network adjoint assist or (DNA)
    Idehenre IU; Harper ES; Mills MS
    Opt Express; 2022 Feb; 30(5):7441-7456. PubMed ID: 35299506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological encoding method for data-driven photonics inverse design.
    Liu Z; Zhu Z; Cai W
    Opt Express; 2020 Feb; 28(4):4825-4835. PubMed ID: 32121714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.
    Chen G; Zhang K; Yu A; Wang X; Zhang Z; Li Y; Wen Z; Li C; Dai L; Jiang S; Lin F
    Opt Express; 2016 May; 24(10):11002-8. PubMed ID: 27409922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.
    Yuan G; Rogers ET; Roy T; Adamo G; Shen Z; Zheludev NI
    Sci Rep; 2014 Sep; 4():6333. PubMed ID: 25208611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven design of thin-film optical systems using deep active learning.
    Hong Y; Nicholls DP
    Opt Express; 2022 Jun; 30(13):22901-22910. PubMed ID: 36224980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus.
    Li W; He P; Lei D; Fan Y; Du Y; Gao B; Chu Z; Li L; Liu K; An C; Yuan W; Yu Y
    Nat Commun; 2023 Aug; 14(1):5107. PubMed ID: 37607942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and analysis of multi-wavelength diffractive optics.
    Kim G; Domínguez-Caballero JA; Menon R
    Opt Express; 2012 Jan; 20(3):2814-23. PubMed ID: 22330517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Enhanced Deep Greedy Optimization Algorithm for the On-Demand Inverse Design of TMDC-Cavity Heterojunctions.
    Zhao Z; You J; Zhang J; Tang Y
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning enables the design of a bidirectional focusing diffractive lens.
    Jia W; Lin D; Menon R; Sensale-Rodriguez B
    Opt Lett; 2023 May; 48(9):2425-2428. PubMed ID: 37126289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing the Limits of Functionality-Multiplexing Capability in Metasurface Design Based on Statistical Machine Learning.
    Ma W; Xu Y; Xiong B; Deng L; Peng RW; Wang M; Liu Y
    Adv Mater; 2022 Apr; 34(16):e2110022. PubMed ID: 35167138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer.
    Zhao J; Ye H; Huang K; Chen ZN; Li B; Qiu CW
    Sci Rep; 2014 Sep; 4():6257. PubMed ID: 25174409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci.
    Li M; Li W; Li H; Zhu Y; Yu Y
    Sci Rep; 2017 May; 7(1):1335. PubMed ID: 28465580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.