These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36946956)

  • 21. Apodized multilevel diffractive lenses that produce desired diffraction-limited focal spots.
    Cao Q; Jahns J
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):179-86. PubMed ID: 16478075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.
    Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG
    Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning spectral initialization for phase retrieval via deep neural networks.
    Morales D; Jerez A; Arguello H
    Appl Opt; 2022 Mar; 61(9):F25-F33. PubMed ID: 35333223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.
    Shan M; Tan J
    Opt Express; 2007 Dec; 15(25):17032-7. PubMed ID: 19550995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. End-to-end physics-informed deep neural network optimization of sub-Nyquist lenses.
    Lindsay MB; Kovaleski SD; Varner AG; Veal CT; Anderson DT; Price SR; Price SR
    Opt Express; 2023 Sep; 31(20):33026-33040. PubMed ID: 37859091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Efficiency, Near-Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths.
    Liang Y; Liu H; Wang F; Meng H; Guo J; Li J; Wei Z
    Nanomaterials (Basel); 2018 Apr; 8(5):. PubMed ID: 29710780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution.
    Feng D; Ou P; Feng LS; Hu SL; Zhang CX
    Opt Express; 2008 Dec; 16(25):20968-73. PubMed ID: 19065236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):862-9. PubMed ID: 15898545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; Gérard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-directional beam steering using diffractive neural networks.
    Idehenre IU; Mills MS
    Opt Express; 2020 Aug; 28(18):25915-25934. PubMed ID: 32906872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time multi-task diffractive deep neural networks via hardware-software co-design.
    Li Y; Chen R; Sensale-Rodriguez B; Gao W; Yu C
    Sci Rep; 2021 May; 11(1):11013. PubMed ID: 34040045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral analysis of femtosecond pulse diffraction through binary diffractive optical elements: theory and experiment.
    Mendoza-Yero O; Mínguez-Vega G; Lancis J; Tajahuerce E; Climent V
    Opt Express; 2008 Feb; 16(4):2541-6. PubMed ID: 18542335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive focusing analysis of various Fresnel zone plates.
    Cao Q; Jahns J
    J Opt Soc Am A Opt Image Sci Vis; 2004 Apr; 21(4):561-71. PubMed ID: 15078028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved first Rayleigh-Sommerfeld method applied to metallic cylindrical focusing micro mirrors.
    Ye JS; Zhang Y; Hane K
    Opt Express; 2009 Apr; 17(9):7348-60. PubMed ID: 19399113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array.
    Ruan D; Li Z; Du L; Zhou X; Zhu L; Lin C; Yang M; Chen G; Yuan W; Liang G; Wen Z
    Appl Opt; 2018 Sep; 57(27):7905-7909. PubMed ID: 30462058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization-free customization of optical tightly focused fields: uniform needles and hotspot chains.
    He J; Zhuang J; Ding L; Huang K
    Appl Opt; 2021 Apr; 60(11):3081-3087. PubMed ID: 33983203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of optical meta-structures with applications to beam engineering using deep learning.
    Singh R; Agarwal A; Anthony BW
    Sci Rep; 2020 Nov; 10(1):19923. PubMed ID: 33199746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focus shaping of high numerical aperture lens using physics-assisted artificial neural networks.
    Chen ZY; Wei Z; Chen R; Dong JW
    Opt Express; 2021 Apr; 29(9):13011-13024. PubMed ID: 33985046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherent modulation imaging using a physics-driven neural network.
    Yang D; Zhang J; Tao Y; Lv W; Zhu Y; Ruan T; Chen H; Jin X; Wang Z; Qiu J; Shi Y
    Opt Express; 2022 Sep; 30(20):35647-35662. PubMed ID: 36258511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physics-informed neural networks for inverse problems in nano-optics and metamaterials.
    Chen Y; Lu L; Karniadakis GE; Dal Negro L
    Opt Express; 2020 Apr; 28(8):11618-11633. PubMed ID: 32403669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.