These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36946960)
1. Graphene perfect absorber based on degenerate critical coupling of toroidal mode. Xu R; Fujikata J; Takahara J Opt Lett; 2023 Mar; 48(6):1490-1493. PubMed ID: 36946960 [TBL] [Abstract][Full Text] [Related]
2. A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared. Wu P; Chen Z; Xu D; Zhang C; Jian R Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906390 [TBL] [Abstract][Full Text] [Related]
3. High Quality Factor, High Sensitivity Metamaterial Graphene-Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Cen C; Chen Z; Xu D; Jiang L; Chen X; Yi Z; Wu P; Li G; Yi Y Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906572 [TBL] [Abstract][Full Text] [Related]
4. Broadband Perfect Absorber in the Visible Range Based on Metasurface Composite Structures. Wang R; Yue S; Zhang Z; Hou Y; Zhao H; Qu S; Li M; Zhang Z Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407943 [TBL] [Abstract][Full Text] [Related]
5. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Jiang X; Wang T; Xiao S; Yan X; Cheng L Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184 [TBL] [Abstract][Full Text] [Related]
6. Low-Threshold and High-Extinction-Ratio Optical Bistability within a Graphene-Based Perfect Absorber. Zhang Z; Sun Q; Fan Y; Zhu Z; Zhang J; Yuan X; Guo C Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770348 [TBL] [Abstract][Full Text] [Related]
7. A Tunable Dual-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Luo X; Cheng ZQ; Zhai X; Liu ZM; Li SQ; Liu JP; Wang LL; Lin Q; Zhou YH Nanoscale Res Lett; 2019 Nov; 14(1):337. PubMed ID: 31686268 [TBL] [Abstract][Full Text] [Related]
8. Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface. Chen X; Meng Q; Xu W; Zhang J; Zhu Z; Qin S Opt Express; 2021 Oct; 29(21):32796-32803. PubMed ID: 34809102 [TBL] [Abstract][Full Text] [Related]
9. Reflectionless graphene perfect absorber based on parity symmetric unidirectional guided resonance. Xu W; Hong Q; Peng J; Liu P; Yang B; Guo C; Zhu Z Opt Lett; 2023 Nov; 48(22):5963-5966. PubMed ID: 37966763 [TBL] [Abstract][Full Text] [Related]
10. High-speed tunable optical absorber based on a coupled photonic crystal slab and monolayer graphene structure. Pan M; Liu A; Liu Z; Zhou W Opt Express; 2022 Dec; 30(26):47612-47624. PubMed ID: 36558686 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126 [TBL] [Abstract][Full Text] [Related]
12. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Wang X; Liang Y; Wu L; Guo J; Dai X; Xiang Y Opt Lett; 2018 Sep; 43(17):4256-4259. PubMed ID: 30160765 [TBL] [Abstract][Full Text] [Related]
13. Designing a nearly perfect infrared absorber in monolayer black phosphorus. Dong D; Liu Y; Fei Y; Fan Y; Li J; Feng Y; Fu Y Appl Opt; 2019 May; 58(14):3862-3869. PubMed ID: 31158205 [TBL] [Abstract][Full Text] [Related]
14. Perfect Absorption and Reflection Modulation Based on Asymmetric Slot-Assisted Gratings without Mirrors. Lee S; Kim S Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999276 [TBL] [Abstract][Full Text] [Related]
15. Chip-integrated nearly perfect absorber at telecom wavelengths by graphene coupled with nanobeam cavity. Xu W; Zhu ZH; Liu K; Zhang JF; Yuan XD; Lu QS; Qin SQ Opt Lett; 2015 Jul; 40(14):3256-9. PubMed ID: 26176443 [TBL] [Abstract][Full Text] [Related]
16. Graphene perfect absorber design based on an approach of mimicking a one-port system in an asymmetric single resonator. Lee S; Song J; Kim S Opt Express; 2021 Sep; 29(19):29631-29640. PubMed ID: 34614704 [TBL] [Abstract][Full Text] [Related]
17. Radiative loss control of an embedded silicon perfect absorber in the visible region. Xu R; Takahara J Opt Lett; 2021 Feb; 46(4):805-808. PubMed ID: 33577519 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Light Absorption of Monolayer Graphene by Quasi-Bound State in the Continuum. Sang T; Dereshgi SA; Hadibrata W; Tanriover I; Aydin K Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33672919 [TBL] [Abstract][Full Text] [Related]
19. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related]
20. Tunable terahertz coherent perfect absorption in a monolayer graphene. Fan Y; Zhang F; Zhao Q; Wei Z; Li H Opt Lett; 2014 Nov; 39(21):6269-72. PubMed ID: 25361331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]