BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36946964)

  • 1. Accurate modeling and measurement of pressure-induced group velocity dispersion variations in anti-resonant hollow-core fibers.
    Sheng Y; Sun Y; Gao S; Liang Z; Hong Y; Wang Y; Ding W
    Opt Lett; 2023 Mar; 48(6):1506-1509. PubMed ID: 36946964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review.
    Nikodem M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers.
    Finger MA; Joly NY; Weiss T; Russell PS
    Opt Lett; 2014 Feb; 39(4):821-4. PubMed ID: 24562215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birefringent, low loss, and broadband semi-tube anti-resonant hollow-core fiber.
    Hong Y; Jia A; Gao S; Sheng Y; Lu X; Liang Z; Zhang Z; Ding W; Wang Y
    Opt Lett; 2023 Jan; 48(1):163-166. PubMed ID: 36563396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling.
    Wang Y; Li Z; Yu F; Wang M; Han Y; Hu L; Knight J
    Opt Express; 2022 Jan; 30(1):222-231. PubMed ID: 35201201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique.
    Huang W; Cui Y; Li X; Zhou Z; Li Z; Wang M; Xi X; Chen Z; Wang Z
    Opt Express; 2019 Dec; 27(26):37111-37121. PubMed ID: 31878497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catastrophic damage in hollow core optical fibers under high power laser radiation.
    Bufetov IA; Kolyadin AN; Kosolapov AF; Efremov VP; Fortov VE
    Opt Express; 2019 Jun; 27(13):18296-18310. PubMed ID: 31252775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and broadband fiber dispersion measurement with dense wavelength sampling.
    Ponzo GM; Petrovich MN; Feng X; Horak P; Poletti F; Petropoulos P; Richardson DJ
    Opt Express; 2014 Jan; 22(1):943-53. PubMed ID: 24515054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing.
    Hou M; Zhu F; Wang Y; Wang Y; Liao C; Liu S; Lu P
    Opt Express; 2016 Nov; 24(24):27890-27898. PubMed ID: 27906357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hundred-meter-scale, kilowatt peak-power, near-diffraction-limited, mid-infrared pulse delivery via the low-loss hollow-core fiber.
    Fu Q; Wu Y; Davidson IA; Xu L; Jasion GT; Liang S; Rikimi S; Poletti F; Wheeler NV; Richardson DJ
    Opt Lett; 2022 Oct; 47(20):5301-5304. PubMed ID: 36240347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter optimization of hollow-core optical fiber phase modulators.
    Guo L; Jiang S; Gao S; Wang Y; Zhao S; Ho HL; Jin W
    Opt Lett; 2023 Jun; 48(12):3335-3338. PubMed ID: 37319095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers.
    Saitoh K; Koshiba M
    Opt Express; 2003 Nov; 11(23):3100-9. PubMed ID: 19471432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of resonant bend loss in anti-resonant hollow core optical fiber.
    Carter RM; Yu F; Wadsworth WJ; Shephard JD; Birks T; Knight JC; Hand DP
    Opt Express; 2017 Aug; 25(17):20612-20621. PubMed ID: 29041739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-resonance, inhibited coupling and mode transition in depressed core fibers.
    Lian X; Farrell G; Wu Q; Han W; Shen C; Ma Y; Semenova Y
    Opt Express; 2020 May; 28(11):16526-16541. PubMed ID: 32549473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers.
    Mousavi SA; Mulvad HCH; Wheeler NV; Horak P; Hayes J; Chen Y; Bradley TD; Alam SU; Sandoghchi SR; Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2018 Apr; 26(7):8866-8882. PubMed ID: 29715848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber laser source of 8 W at 3.1 µm based on acetylene-filled hollow-core silica fibers.
    Huang W; Wang Z; Zhou Z; Cui Y; Li H; Pei W; Wang M; Chen J
    Opt Lett; 2022 May; 47(9):2354-2357. PubMed ID: 35486798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of multiple anti-resonant light guidance mechanisms in a hollow-core fiber structure for simultaneous measurement of multiple parameters.
    Liu D; Huang Z; Wu Q; Yan L; Tian K; Shen C; Farrell G; Semenova Y; Wang P
    Opt Lett; 2022 Oct; 47(19):4849-4852. PubMed ID: 36181133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher-Order Mode Suppression in Antiresonant Nodeless Hollow-Core Fibers.
    Ge A; Meng F; Li Y; Liu B; Hu M
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiresonant mechanism based self-temperature-calibrated fiber optic Fabry-Perot gas pressure sensors.
    Gao H; Jiang Y; Zhang L; Cui Y; Jiang Y; Jia J; Jiang L
    Opt Express; 2019 Aug; 27(16):22181-22189. PubMed ID: 31510513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.