BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36947382)

  • 1. Mining waste and coconut fibers as an eco-friendly reinforcement for the production of concrete blocks.
    Terra ICC; Batista FG; Silva DW; Scatolino MV; Alves Júnior FT; Martins MA; Mendes LM
    Environ Sci Pollut Res Int; 2023 May; 30(22):62641-62652. PubMed ID: 36947382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on the eco-friendly plastic-sand paver blocks by utilising plastic waste and basalt fibers.
    Iftikhar B; Alih SC; Vafaei M; Ali M; Javed MF; Asif U; Ismail M; Umer M; Gamil Y; Amran M
    Heliyon; 2023 Jun; 9(6):e17107. PubMed ID: 37484238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly particleboard production from coconut waste valorization.
    de Souza MJC; de Melo RR; Guimarães Junior JB; Mascarenhas ARP; de Oliveira Paula EA; Pedrosa TD; Maskell D; Mensah P; Rodolfo Junior F
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):15241-15252. PubMed ID: 36166124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete.
    Bheel N; Mahro SK; Adesina A
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5682-5692. PubMed ID: 32970258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical performance and environmental impact of normal strength concrete incorporating various levels of coconut fiber and recycled aggregates.
    Shah SHA; Amir MT; Ali B; El Ouni MH
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):83636-83651. PubMed ID: 35767169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic and sustainable utilization of coconut shell ash and groundnut shell ash in ternary blended concrete.
    Bheel N; Aluko OG; Khoso AR
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):27399-27410. PubMed ID: 34982384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of waste recycling coal bottom ash and sugarcane bagasse ash as cement and sand replacement material to produce sustainable concrete.
    Bheel N; Khoso S; Baloch MH; Benjeddou O; Alwetaishi M
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):52399-52411. PubMed ID: 35258727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel applications of waste foundry sand in conventional and dry-mix concretes.
    Matos PR; Marcon MF; Schankoski RA; Prudêncio LR
    J Environ Manage; 2019 Aug; 244():294-303. PubMed ID: 31128334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally friendly concrete block production: valorization of civil construction and chemical industry waste.
    Junkes VH; Fuziki MEK; Tusset AM; Rodrigues PH; Lenzi GG
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):17788-17803. PubMed ID: 38177647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of coir pith particles in composites with Portland cement.
    Brasileiro GA; Vieira JA; Barreto LS
    J Environ Manage; 2013 Dec; 131():228-38. PubMed ID: 24184526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable approaches in concrete production: An in-depth review of waste foundry sand utilization and environmental considerations.
    Mehta V
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23435-23461. PubMed ID: 38462563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate.
    Zaid O; Ahmad J; Siddique MS; Aslam F; Alabduljabbar H; Khedher KM
    Sci Rep; 2021 Jun; 11(1):12822. PubMed ID: 34140603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface treatment on the technological properties of coconut fiber-reinforced plant polyurethane composites.
    Faria DL; Mendes LM; Junior JBG
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52124-52140. PubMed ID: 36823468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect on mechanical properties of lightweight sustainable concrete with the use of waste coconut shell as replacement for coarse aggregate.
    Natarajan KS; Ramalingasekar D; Palanisamy S; Ashokan M
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39421-39426. PubMed ID: 35106723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Portland Cement-Based Material with
    Rosas-Díaz F; García-Hernández DG; Mendoza-Rangel JM; Terán-Torres BT; Galindo-Rodríguez SA; Juárez-Alvarado CA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.
    Mastella MA; Gislon ES; Pelisser F; Ricken C; da Silva L; Angioletto E; Montedo OR
    Waste Manag; 2014 Aug; 34(8):1495-500. PubMed ID: 24582355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging.
    Arun R; Shruthy R; Preetha R; Sreejit V
    Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulosic materials as soil-cement brick reinforcement.
    Sabino TPF; Coelho NPF; Andrade NC; Metzker SLO; Viana QS; Mendes JF; Mendes RF
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21769-21788. PubMed ID: 34773234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A state-of-the-art review on coir fiber-reinforced biocomposites.
    Hasan KMF; Horváth PG; Bak M; Alpár T
    RSC Adv; 2021 Mar; 11(18):10548-10571. PubMed ID: 35423548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential destination of Brazilian cocoa agro-industrial wastes for production of materials with high added value.
    Veloso MCRA; Pires MR; Villela LS; Scatolino MV; Protásio TP; Mendes LM; Guimarães Júnior JB
    Waste Manag; 2020 Dec; 118():36-44. PubMed ID: 32889232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.