BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36947856)

  • 1. The Wild-Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequence-Specific DNA Base Editing.
    Ranzau BL; Rallapalli KL; Evanoff M; Paesani F; Komor AC
    Chembiochem; 2023 Aug; 24(16):e202200788. PubMed ID: 36947856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking the secrets of ABEs: the molecular mechanism behind their specificity.
    Chen X; McAndrew MJ; Lapinaite A
    Biochem Soc Trans; 2023 Aug; 51(4):1635-1646. PubMed ID: 37526140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity.
    Li J; Yu W; Huang S; Wu S; Li L; Zhou J; Cao Y; Huang X; Qiao Y
    Nat Commun; 2021 Apr; 12(1):2287. PubMed ID: 33863894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity.
    Wang P; Xu L; Gao Y; Han R
    Mol Ther; 2020 Jul; 28(7):1696-1705. PubMed ID: 32353322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli.
    Wolf J; Gerber AP; Keller W
    EMBO J; 2002 Jul; 21(14):3841-51. PubMed ID: 12110595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors.
    Rallapalli KL; Komor AC; Paesani F
    Sci Adv; 2020 Mar; 6(10):eaaz2309. PubMed ID: 32181363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and minimization of cellular RNA editing by DNA adenine base editors.
    Rees HA; Wilson C; Doman JL; Liu DR
    Sci Adv; 2019 May; 5(5):eaax5717. PubMed ID: 31086823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants.
    Li S; Liu L; Sun W; Zhou X; Zhou H
    Genome Biol; 2022 Feb; 23(1):51. PubMed ID: 35139891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved cytosine base editors generated from TadA variants.
    Lam DK; Feliciano PR; Arif A; Bohnuud T; Fernandez TP; Gehrke JM; Grayson P; Lee KD; Ortega MA; Sawyer C; Schwaegerle ND; Peraro L; Young L; Lee SJ; Ciaramella G; Gaudelli NM
    Nat Biotechnol; 2023 May; 41(5):686-697. PubMed ID: 36624149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency and multiplex adenine base editing in plants using new TadA variants.
    Yan D; Ren B; Liu L; Yan F; Li S; Wang G; Sun W; Zhou X; Zhou H
    Mol Plant; 2021 May; 14(5):722-731. PubMed ID: 33631420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-Check Base Editing for Efficient A to G Conversions.
    Xin X; Li J; Zhao D; Li S; Xie Q; Li Z; Fan F; Bi C; Zhang X
    ACS Synth Biol; 2019 Dec; 8(12):2629-2634. PubMed ID: 31765564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA.
    Gao Z; Jiang W; Zhang Y; Zhang L; Yi M; Wang H; Ma Z; Qu B; Ji X; Long H; Zhang S
    Commun Biol; 2023 Jul; 6(1):744. PubMed ID: 37464027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
    Gaudelli NM; Komor AC; Rees HA; Packer MS; Badran AH; Bryson DI; Liu DR
    Nature; 2017 Nov; 551(7681):464-471. PubMed ID: 29160308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA capture by a CRISPR-Cas9-guided adenine base editor.
    Lapinaite A; Knott GJ; Palumbo CM; Lin-Shiao E; Richter MF; Zhao KT; Beal PA; Liu DR; Doudna JA
    Science; 2020 Jul; 369(6503):566-571. PubMed ID: 32732424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum).
    Wang G; Xu Z; Wang F; Huang Y; Xin Y; Liang S; Li B; Si H; Sun L; Wang Q; Ding X; Zhu X; Chen L; Yu L; Lindsey K; Zhang X; Jin S
    BMC Biol; 2022 Feb; 20(1):45. PubMed ID: 35164736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA.
    Elias Y; Huang RH
    Biochemistry; 2005 Sep; 44(36):12057-65. PubMed ID: 16142903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.