These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 36948010)
1. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database. Hao N; Sun P; Zhao W; Li X Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010 [TBL] [Abstract][Full Text] [Related]
2. Prediction and feature selection of low birth weight using machine learning algorithms. Reza TB; Salma N J Health Popul Nutr; 2024 Oct; 43(1):157. PubMed ID: 39396025 [TBL] [Abstract][Full Text] [Related]
3. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer. Ozcan I; Aydin H; Cetinkaya A Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351 [TBL] [Abstract][Full Text] [Related]
5. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
6. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine. Zhong M; Nie X; Yan A; Yuan Q Chem Res Toxicol; 2013 May; 26(5):741-9. PubMed ID: 23577695 [TBL] [Abstract][Full Text] [Related]
7. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Zhang L; Ai H; Chen W; Yin Z; Hu H; Zhu J; Zhao J; Zhao Q; Liu H Sci Rep; 2017 May; 7(1):2118. PubMed ID: 28522849 [TBL] [Abstract][Full Text] [Related]
8. Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling. Tanabe K; Lučić B; Amić D; Kurita T; Kaihara M; Onodera N; Suzuki T Mol Divers; 2010 Nov; 14(4):789-802. PubMed ID: 20186479 [TBL] [Abstract][Full Text] [Related]
9. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms. Garavand A; Salehnasab C; Behmanesh A; Aslani N; Zadeh AH; Ghaderzadeh M J Healthc Eng; 2022; 2022():5359540. PubMed ID: 36304749 [TBL] [Abstract][Full Text] [Related]
10. Disability risk prediction model based on machine learning among Chinese healthy older adults: results from the China Health and Retirement Longitudinal Study. Han Y; Wang S Front Public Health; 2023; 11():1271595. PubMed ID: 38026309 [TBL] [Abstract][Full Text] [Related]
11. Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models. Devi S; Kaul Ghanekar R; Pande JA; Dumbre D; Chavan R; Gupta H Asian Pac J Cancer Prev; 2024 Mar; 25(3):1077-1085. PubMed ID: 38546090 [TBL] [Abstract][Full Text] [Related]
12. PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning. Farias JG; Herrera-Belén L; Jimenez L; Beltrán JF Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408595 [TBL] [Abstract][Full Text] [Related]
13. Machine learning model-based risk prediction of severe complications after off-pump coronary artery bypass grafting. Zhang Y; Li L; Li Y; Zeng Z Adv Clin Exp Med; 2023 Feb; 32(2):185-194. PubMed ID: 36226692 [TBL] [Abstract][Full Text] [Related]
14. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
15. A machine learning approach to predicting vascular calcification risk of type 2 diabetes: A retrospective study. Liang X; Li X; Li G; Wang B; Liu Y; Sun D; Liu L; Zhang R; Ji S; Yan W; Yu R; Gao Z; Liu X Clin Cardiol; 2024 Apr; 47(4):e24264. PubMed ID: 38563389 [TBL] [Abstract][Full Text] [Related]
16. Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis. Zeleke AJ; Palumbo P; Tubertini P; Miglio R; Chiari L Front Artif Intell; 2023; 6():1179226. PubMed ID: 37588696 [TBL] [Abstract][Full Text] [Related]
17. Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method. Limbu S; Dakshanamurthy S Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365881 [TBL] [Abstract][Full Text] [Related]
18. Comparison of different machine learning classification models for predicting deep vein thrombosis in lower extremity fractures. Wei C; Wang J; Yu P; Li A; Xiong Z; Yuan Z; Yu L; Luo J Sci Rep; 2024 Mar; 14(1):6901. PubMed ID: 38519523 [TBL] [Abstract][Full Text] [Related]
19. Comparing machine learning algorithms to predict COVID‑19 mortality using a dataset including chest computed tomography severity score data. Zakariaee SS; Naderi N; Ebrahimi M; Kazemi-Arpanahi H Sci Rep; 2023 Jul; 13(1):11343. PubMed ID: 37443373 [TBL] [Abstract][Full Text] [Related]
20. Efficient Prediction of Missed Clinical Appointment Using Machine Learning. Qureshi Z; Maqbool A; Mirza A; Iqbal MZ; Afzal F; Kanubala DD; Rana T; Umair MY; Wakeel A; Shah SK Comput Math Methods Med; 2021; 2021():2376391. PubMed ID: 34721656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]