BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36948025)

  • 1. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker.
    Yan S; Wu S; Zhang J; Zhang S; Huang Y; Zhu H; Li Y; Qi B
    Food Chem; 2023 Aug; 418():135966. PubMed ID: 36948025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release.
    Cui T; Wu Y; Ni C; Sun Y; Cheng J
    Carbohydr Polym; 2022 May; 283():119154. PubMed ID: 35153020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis.
    Wei Z; Gerecht S
    Biomaterials; 2018 Dec; 185():86-96. PubMed ID: 30236839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds.
    Kim SH; Chu CC
    J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films.
    Draye JP; Delaey B; Van de Voorde A; Van Den Bulcke A; Bogdanov B; Schacht E
    Biomaterials; 1998; 19(1-3):99-107. PubMed ID: 9678856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins.
    Hennink WE; De Jong SJ; Bos GW; Veldhuis TF; van Nostrum CF
    Int J Pharm; 2004 Jun; 277(1-2):99-104. PubMed ID: 15158973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources.
    Liao H; Zhang H; Chen W
    J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach.
    Zuluaga M; Gregnanin G; Cencetti C; Di Meo C; Gueguen V; Letourneur D; Meddahi-Pellé A; Pavon-Djavid G; Matricardi P
    Biomed Mater; 2017 Dec; 13(1):015020. PubMed ID: 28875946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-stimuli-responsive drug release from interpenetrating polymer network-structured hydrogels of gelatin and dextran.
    Kurisawa M; Yui N
    J Control Release; 1998 Jul; 54(2):191-200. PubMed ID: 9724906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing.
    Zhang M; Huang Y; Pan W; Tong X; Zeng Q; Su T; Qi X; Shen J
    Carbohydr Polym; 2021 Feb; 253():117213. PubMed ID: 33278978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability.
    Rathna GV
    J Mater Sci Mater Med; 2008 Jun; 19(6):2351-8. PubMed ID: 18157687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable PAMAM/ODex double-crosslinked hydrogels with high mechanical strength.
    Li S; Wang J; Song L; Zhou Y; Zhao J; Hou X; Yuan X
    Biomed Mater; 2016 Dec; 12(1):015012. PubMed ID: 27934783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran.
    Weng L; Romanov A; Rooney J; Chen W
    Biomaterials; 2008 Oct; 29(29):3905-13. PubMed ID: 18639926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the tunable effect of oxidized konjac glucomannan with different molecular weight on gelatin-based composite hydrogels.
    Li G; Jiang Y; Li M; Zhang W; Li Q; Tang K
    Int J Biol Macromol; 2021 Jan; 168():233-241. PubMed ID: 33309658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and biocompatibility of in situ enzymatically cross-linked gelatin hydrogels.
    Alarake NZ; Frohberg P; Groth T; Pietzsch M
    Int J Artif Organs; 2017 May; 40(4):159-168. PubMed ID: 28315501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.