These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36948241)

  • 1. Rational genome and metabolic engineering of Candida viswanathii by split CRISPR to produce hundred grams of dodecanedioic acid.
    Pham NN; Chang CW; Chang YH; Tu Y; Chou JY; Wang HY; Hu YC
    Metab Eng; 2023 May; 77():76-88. PubMed ID: 36948241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level productivity of α,ω-dodecanedioic acid with a newly isolated Candida viswanathii strain.
    Cao W; Li H; Luo J; Yin J; Wan Y
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1191-1202. PubMed ID: 28451837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α, ω-Dodecanedioic acid production by Candida viswanathii ipe-1 with co-utilization of wheat straw hydrolysates and n-dodecane.
    Cao W; Liu B; Luo J; Yin J; Wan Y
    Bioresour Technol; 2017 Nov; 243():179-187. PubMed ID: 28662387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of dodecanedioic acid from n-dodecane by yeasts.
    Liu WH; Kuo CK
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1989 Nov; 22(4):242-8. PubMed ID: 2637105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids.
    Wang J; Peng J; Fan H; Xiu X; Xue L; Wang L; Su J; Yang X; Wang R
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):971-981. PubMed ID: 30187242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis.
    Funk I; Rimmel N; Schorsch C; Sieber V; Schmid J
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1491-1502. PubMed ID: 28756564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving α, ω-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation.
    Cao W; Wang Y; Luo J; Yin J; Wan Y
    Bioresour Technol; 2018 Jul; 260():9-15. PubMed ID: 29604565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oxygen supply in α, ω-dodecanedioic acid biosynthesis from n-dodecane by
    Cao W; Wang Y; Luo J; Yin J; Wan Y
    Eng Life Sci; 2018 Mar; 18(3):196-203. PubMed ID: 32624898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production.
    Lee H; Sugiharto YEC; Lee S; Park G; Han C; Jang H; Jeon W; Park H; Ahn J; Kang K; Lee H
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6333-6342. PubMed ID: 28589225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous high nutritional single cell oil and lipase production by Candida viswanathii.
    Dias KB; Oliveira NML; Brasil BSAF; Vieira-Almeida EC; Paula-Elias FC; Almeida AF
    Acta Sci Pol Technol Aliment; 2021; 20(1):93-102. PubMed ID: 33449523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids.
    Picataggio S; Rohrer T; Deanda K; Lanning D; Reynolds R; Mielenz J; Eirich LD
    Biotechnology (N Y); 1992 Aug; 10(8):894-8. PubMed ID: 1368984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
    Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids.
    Werner N; Dreyer M; Wagner W; Papon N; Rupp S; Zibek S
    Biotechnol Lett; 2017 Mar; 39(3):429-438. PubMed ID: 27904981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Stable
    Pham NN; Chen CY; Li H; Nguyen MTT; Nguyen PKP; Tsai SL; Chou JY; Ramli TC; Hu YC
    ACS Synth Biol; 2020 May; 9(5):1138-1149. PubMed ID: 32298581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects.
    Gu S; Zhu F; Zhang L; Wen J
    J Agric Food Chem; 2024 Mar; 72(11):5555-5573. PubMed ID: 38442481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.