These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Ao JY; Zhu XD; Chai ZT; Cai H; Zhang YY; Zhang KZ; Kong LQ; Zhang N; Ye BG; Ma DN; Sun HC Mol Cancer Ther; 2017 Aug; 16(8):1544-1554. PubMed ID: 28572167 [TBL] [Abstract][Full Text] [Related]
23. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Esser AK; Ross MH; Fontana F; Su X; Gabay A; Fox GC; Xu Y; Xiang J; Schmieder AH; Yang X; Cui G; Scott M; Achilefu S; Chauhan J; Fletcher S; Lanza GM; Weilbaecher KN Theranostics; 2020; 10(17):7510-7526. PubMed ID: 32685002 [TBL] [Abstract][Full Text] [Related]
26. Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Evans JC; Malhotra M; Fitzgerald KA; Guo J; Cronin MF; Curtin CM; O'Brien FJ; Darcy R; O'Driscoll CM Mol Pharm; 2017 Jan; 14(1):42-52. PubMed ID: 28043128 [TBL] [Abstract][Full Text] [Related]
27. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Wang Y; Luan Z; Zhao C; Bai C; Yang K Eur J Pharm Sci; 2020 Jan; 142():105136. PubMed ID: 31704343 [TBL] [Abstract][Full Text] [Related]
28. Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Evrard D; Szturz P; Tijeras-Raballand A; Astorgues-Xerri L; Abitbol C; Paradis V; Raymond E; Albert S; Barry B; Faivre S Oral Oncol; 2019 Jan; 88():29-38. PubMed ID: 30616794 [TBL] [Abstract][Full Text] [Related]
29. Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy. Wu X; Cheng Y; Zheng R; Xu K; Yan J; Song P; Wang Y; Rauf A; Pan Y; Zhang H ACS Appl Mater Interfaces; 2021 May; 13(17):19825-19835. PubMed ID: 33881837 [TBL] [Abstract][Full Text] [Related]
30. Surface Modification of Polymeric Nanoparticles with M2pep Peptide for Drug Delivery to Tumor-Associated Macrophages. Pang L; Pei Y; Uzunalli G; Hyun H; Lyle LT; Yeo Y Pharm Res; 2019 Mar; 36(4):65. PubMed ID: 30859335 [TBL] [Abstract][Full Text] [Related]
31. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. Haegel H; Thioudellet C; Hallet R; Geist M; Menguy T; Le Pogam F; Marchand JB; Toh ML; Duong V; Calcei A; Settelen N; Preville X; Hennequi M; Grellier B; Ancian P; Rissanen J; Clayette P; Guillen C; Rooke R; Bonnefoy JY MAbs; 2013; 5(5):736-47. PubMed ID: 23924795 [TBL] [Abstract][Full Text] [Related]
32. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. Lin X; Fang Y; Jin X; Zhang M; Shi K ACS Appl Bio Mater; 2021 Aug; 4(8):5871-5896. PubMed ID: 35006894 [TBL] [Abstract][Full Text] [Related]
33. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF. Fu JL; Hao HF; Wang S; Jiao YN; Li PP; Han SY J Ethnopharmacol; 2022 Nov; 298():115607. PubMed ID: 35973634 [TBL] [Abstract][Full Text] [Related]
34. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Yang M; Li J; Gu P; Fan X Bioact Mater; 2021 Jul; 6(7):1973-1987. PubMed ID: 33426371 [TBL] [Abstract][Full Text] [Related]
35. Terminating the renewal of tumor-associated macrophages: A sialic acid-based targeted delivery strategy for cancer immunotherapy. Ding J; Zhao D; Hu Y; Liu M; Liao X; Zhao B; Liu X; Deng Y; Song Y Int J Pharm; 2019 Nov; 571():118706. PubMed ID: 31593811 [TBL] [Abstract][Full Text] [Related]
36. TD-92, a novel erlotinib derivative, depletes tumor-associated macrophages in non-small cell lung cancer via down-regulation of CSF-1R and enhances the anti-tumor effects of anti-PD-1. Shih CT; Shiau CW; Chen YL; Chen LJ; Chao TI; Wang CY; Huang CY; Hung MH; Chen KF Cancer Lett; 2021 Feb; 498():142-151. PubMed ID: 33232786 [TBL] [Abstract][Full Text] [Related]
37. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation. Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094 [No Abstract] [Full Text] [Related]
38. Polymersomes-Mediated Delivery of CSF1R Inhibitor to Tumor Associated Macrophages Promotes M2 to M1-Like Macrophage Repolarization. Rodriguez-Perdigon M; Jimaja S; Haeni L; Bruns N; Rothen-Rutishauser B; Rüegg C Macromol Biosci; 2022 Aug; 22(8):e2200168. PubMed ID: 35624036 [TBL] [Abstract][Full Text] [Related]
39. FOXO1 promotes tumor progression by increased M2 macrophage infiltration in esophageal squamous cell carcinoma. Wang Y; Lyu Z; Qin Y; Wang X; Sun L; Zhang Y; Gong L; Wu S; Han S; Tang Y; Jia Y; Kwong DL; Kam N; Guan XY Theranostics; 2020; 10(25):11535-11548. PubMed ID: 33052231 [No Abstract] [Full Text] [Related]
40. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Yang J; Xie SX; Huang Y; Ling M; Liu J; Ran Y; Wang Y; Thrasher JB; Berkland C; Li B Nanomedicine (Lond); 2012 Sep; 7(9):1297-309. PubMed ID: 22583574 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]