These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 36948428)
1. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. Huang KX; Vadiveloo A; Zhou JL; Yang L; Chen DZ; Gao F Bioresour Technol; 2023 May; 376():128941. PubMed ID: 36948428 [TBL] [Abstract][Full Text] [Related]
2. Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery - A review. Xu Z; Wang H; Cheng P; Chang T; Chen P; Zhou C; Ruan R Sci Total Environ; 2020 Dec; 746():141039. PubMed ID: 32750578 [TBL] [Abstract][Full Text] [Related]
3. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. Satpati GG; Dikshit PK; Mal N; Pal R; Sherpa KC; Rajak RC; Rather SU; Raghunathan S; Davoodbasha M Sci Total Environ; 2023 Apr; 870():161828. PubMed ID: 36707000 [TBL] [Abstract][Full Text] [Related]
4. Progress in biohythane production from microalgae-wastewater sludge co-digestion: An integrated biorefinery approach. Kabir SB; Khalekuzzaman M; Hossain N; Jamal M; Alam MA; Abomohra AE Biotechnol Adv; 2022; 57():107933. PubMed ID: 35257785 [TBL] [Abstract][Full Text] [Related]
5. Microalgae harvesting for wastewater treatment and resources recovery: A review. de Morais EG; Sampaio ICF; Gonzalez-Flo E; Ferrer I; Uggetti E; García J N Biotechnol; 2023 Dec; 78():84-94. PubMed ID: 37820831 [TBL] [Abstract][Full Text] [Related]
6. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936 [TBL] [Abstract][Full Text] [Related]
7. Natural microalgal cultivation systems using primary effluent and excess sludge. Yukiyo Y; Hiroyuki S Environ Technol; 2021 Nov; 42(25):3907-3919. PubMed ID: 32295487 [TBL] [Abstract][Full Text] [Related]
8. Microalgal wastewater recycling: Suitability of harvesting methods and influence on growth mechanisms. Sun J; Jiang S; Yang L; Chu H; Peng BY; Xiao S; Wang Y; Zhou X; Zhang Y Sci Total Environ; 2023 Feb; 859(Pt 2):160237. PubMed ID: 36402329 [TBL] [Abstract][Full Text] [Related]
9. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Muradov N; Taha M; Miranda AF; Wrede D; Kadali K; Gujar A; Stevenson T; Ball AS; Mouradov A Biotechnol Biofuels; 2015; 8():24. PubMed ID: 25763102 [TBL] [Abstract][Full Text] [Related]
10. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604 [TBL] [Abstract][Full Text] [Related]
11. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828 [TBL] [Abstract][Full Text] [Related]
12. A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry. Li H; Wang Z; Feng T; Guo Y; Lv J; Li N; Liu X; Liu J Environ Pollut; 2023 Dec; 338():122718. PubMed ID: 37821041 [TBL] [Abstract][Full Text] [Related]
13. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. Wang SK; Yang KX; Zhu YR; Zhu XY; Nie DF; Jiao N; Angelidaki I Bioresour Technol; 2022 Oct; 361():127625. PubMed ID: 35850393 [TBL] [Abstract][Full Text] [Related]
14. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. Wrede D; Taha M; Miranda AF; Kadali K; Stevenson T; Ball AS; Mouradov A PLoS One; 2014; 9(11):e113497. PubMed ID: 25419574 [TBL] [Abstract][Full Text] [Related]
15. Advances in microalgal research for valorization of industrial wastewater. Maurya R; Zhu X; Valverde-Pérez B; Ravi Kiran B; General T; Sharma S; Kumar Sharma A; Thomsen M; Venkata Mohan S; Mohanty K; Angelidaki I Bioresour Technol; 2022 Jan; 343():126128. PubMed ID: 34655786 [TBL] [Abstract][Full Text] [Related]
16. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Leng L; Li W; Chen J; Leng S; Chen J; Wei L; Peng H; Li J; Zhou W; Huang H Bioresour Technol; 2021 Jun; 330():125008. PubMed ID: 33773267 [TBL] [Abstract][Full Text] [Related]
17. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: Effects of natural and artificial lighting on wastewater treatment. Nguyen TT; Bui XT; Nguyen TT; Hao Ngo H; Yi Andrew Lin K; Lin C; Le LT; Dang BT; Bui MH; Varjani S Bioresour Technol; 2022 Jan; 343():126091. PubMed ID: 34624475 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Oruganti RK; Biji AP; Lanuyanger T; Show PL; Sriariyanun M; Upadhyayula VKK; Gadhamshetty V; Bhattacharyya D Sci Total Environ; 2023 Jun; 876():162797. PubMed ID: 36907394 [TBL] [Abstract][Full Text] [Related]
19. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Arias DM; Solé-Bundó M; Garfí M; Ferrer I; García J; Uggetti E Bioresour Technol; 2018 Jan; 247():513-519. PubMed ID: 28972904 [TBL] [Abstract][Full Text] [Related]
20. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Guldhe A; Kumari S; Ramanna L; Ramsundar P; Singh P; Rawat I; Bux F J Environ Manage; 2017 Dec; 203(Pt 1):299-315. PubMed ID: 28803154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]