These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36948706)

  • 41. Native Chemical Ligation Strategy to Overcome Side Reactions during Fmoc-Based Synthesis of C-Terminal Cysteine-Containing Peptides.
    Lelièvre D; Terrier VP; Delmas AF; Aucagne V
    Org Lett; 2016 Mar; 18(5):920-3. PubMed ID: 26878883
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water.
    Tam JP; Yu Q; Yang JL
    J Am Chem Soc; 2001 Mar; 123(11):2487-94. PubMed ID: 11456916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expressed protein ligation: a resourceful tool to study protein structure and function.
    Berrade L; Camarero JA
    Cell Mol Life Sci; 2009 Dec; 66(24):3909-22. PubMed ID: 19685006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of O-GlcNAcylated small heat shock proteins.
    Moon SP; Pratt MR
    Methods Enzymol; 2022; 675():63-82. PubMed ID: 36220281
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Native chemical ligation with Nalpha acyl transfer auxiliaries.
    Offer J
    Biopolymers; 2010; 94(4):530-41. PubMed ID: 20593473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific labeling of polypeptides at amino-terminal cysteine residues using Cy5-benzyl thioester.
    Schuler B; Pannell LK
    Bioconjug Chem; 2002; 13(5):1039-43. PubMed ID: 12236786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semisynthesis of a Homogeneous Glycoprotein Using Chemical Transformation of Peptides to Thioester Surrogates.
    Okamoto R; Iritani K; Amazaki Y; Zhao D; Chandrashekar C; Maki Y; Kanemitsu Y; Kaino T; Kajihara Y
    J Org Chem; 2022 Jan; 87(1):114-124. PubMed ID: 34889597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Recent Progresses in Chemical Synthesis of Proteins with Site-Specific Lysine Post-translational Modifications.
    Wang ZA
    Curr Org Synth; 2019; 16(3):369-384. PubMed ID: 31984899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thioester-Assisted Sortase-A-Mediated Ligation.
    Zuo C; Ding R; Wu X; Wang Y; Chu GC; Liang LJ; Ai H; Tong ZB; Mao J; Zheng Q; Wang T; Li Z; Liu L; Sun D
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202201887. PubMed ID: 35514243
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subtiligase-Catalyzed Peptide Ligation.
    Weeks AM; Wells JA
    Chem Rev; 2020 Mar; 120(6):3127-3160. PubMed ID: 31663725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomimetic synthesis of cyclic peptides using novel thioester surrogates.
    Hemu X; Taichi M; Qiu Y; Liu DX; Tam JP
    Biopolymers; 2013 Sep; 100(5):492-501. PubMed ID: 23893856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-pot semisynthesis of exon 1 of the Huntingtin protein: new tools for elucidating the role of posttranslational modifications in the pathogenesis of Huntington's disease.
    Ansaloni A; Wang ZM; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1928-33. PubMed ID: 24446188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facilitating Subtiligase-Catalyzed Peptide Ligation Reactions by Using Peptide Thioester Substrates.
    Tan X; Yang R; Liu CF
    Org Lett; 2018 Nov; 20(21):6691-6694. PubMed ID: 30350676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.
    Qiu H; Edmunds T; Baker-Malcolm J; Karey KP; Estes S; Schwarz C; Hughes H; Van Patten SM
    J Biol Chem; 2003 Aug; 278(35):32744-52. PubMed ID: 12801930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Labeling and Natural Post-Translational Modification of Peptides and Proteins via Chemoselective Pd-Catalyzed Prenylation of Cysteine.
    Schlatzer T; Kriegesmann J; Schröder H; Trobe M; Lembacher-Fadum C; Santner S; Kravchuk AV; Becker CFW; Breinbauer R
    J Am Chem Soc; 2019 Sep; 141(37):14931-14937. PubMed ID: 31469558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. N-Terminal Modification of Proteins with Subtiligase Specificity Variants.
    Weeks AM; Wells JA
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e79. PubMed ID: 32074409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. N-terminal cysteinyl proteins can be prepared using thrombin cleavage.
    Liu D; Xu R; Dutta K; Cowburn D
    FEBS Lett; 2008 Apr; 582(7):1163-7. PubMed ID: 18331839
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue.
    Pane K; Verrillo M; Avitabile A; Pizzo E; Varcamonti M; Zanfardino A; Di Maro A; Rega C; Amoresano A; Izzo V; Di Donato A; Cafaro V; Notomista E
    Bioconjug Chem; 2018 Apr; 29(4):1373-1383. PubMed ID: 29528625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.