These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36948810)
1. Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics. Li TE; Hammes-Schiffer S J Chem Phys; 2023 Mar; 158(11):114118. PubMed ID: 36948810 [TBL] [Abstract][Full Text] [Related]
2. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory. Tao Z; Yu Q; Roy S; Hammes-Schiffer S Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Time-Dependent Nuclear-Electronic Orbital Approach: Dynamics beyond the Born-Oppenheimer Approximation. Zhao L; Tao Z; Pavošević F; Wildman A; Hammes-Schiffer S; Li X J Phys Chem Lett; 2020 May; 11(10):4052-4058. PubMed ID: 32251589 [TBL] [Abstract][Full Text] [Related]
4. Nuclear-electronic orbital Ehrenfest dynamics. Zhao L; Wildman A; Tao Z; Schneider P; Hammes-Schiffer S; Li X J Chem Phys; 2020 Dec; 153(22):224111. PubMed ID: 33317298 [TBL] [Abstract][Full Text] [Related]
5. Nuclear-Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics. Chow M; Li TE; Hammes-Schiffer S J Phys Chem Lett; 2023 Nov; 14(43):9556-9562. PubMed ID: 37857272 [TBL] [Abstract][Full Text] [Related]
6. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies. Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237 [TBL] [Abstract][Full Text] [Related]
7. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Pavošević F; Culpitt T; Hammes-Schiffer S Chem Rev; 2020 May; 120(9):4222-4253. PubMed ID: 32283015 [TBL] [Abstract][Full Text] [Related]
8. Nuclear-electronic orbital methods: Foundations and prospects. Hammes-Schiffer S J Chem Phys; 2021 Jul; 155(3):030901. PubMed ID: 34293877 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings. Li TE; Tao Z; Hammes-Schiffer S J Chem Theory Comput; 2022 May; 18(5):2774-2784. PubMed ID: 35420037 [TBL] [Abstract][Full Text] [Related]
10. Nuclear-Electronic Orbital Quantum Dynamics of Plasmon-Driven H Li TE; Hammes-Schiffer S J Am Chem Soc; 2023 Aug; 145(33):18210-18214. PubMed ID: 37555733 [TBL] [Abstract][Full Text] [Related]
11. Excited State Intramolecular Proton Transfer with Nuclear-Electronic Orbital Ehrenfest Dynamics. Zhao L; Wildman A; Pavošević F; Tully JC; Hammes-Schiffer S; Li X J Phys Chem Lett; 2021 Apr; 12(14):3497-3502. PubMed ID: 33792317 [TBL] [Abstract][Full Text] [Related]
12. Transition states, reaction paths, and thermochemistry using the nuclear-electronic orbital analytic Hessian. Schneider PE; Tao Z; Pavošević F; Epifanovsky E; Feng X; Hammes-Schiffer S J Chem Phys; 2021 Feb; 154(5):054108. PubMed ID: 33557565 [TBL] [Abstract][Full Text] [Related]
13. A quantum computing implementation of nuclearelectronic orbital (NEO) theory: Toward an exact pre-Born-Oppenheimer formulation of molecular quantum systems. Kovyrshin A; Skogh M; Broo A; Mensa S; Sahin E; Crain J; Tavernelli I J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37272571 [TBL] [Abstract][Full Text] [Related]
14. Diagonal Born-Oppenheimer Corrections within the Nuclear-Electronic Orbital Framework. Schneider PE; Pavošević F; Hammes-Schiffer S J Phys Chem Lett; 2019 Aug; 10(16):4639-4643. PubMed ID: 31347849 [TBL] [Abstract][Full Text] [Related]
15. Nonadiabatic Dynamics of Hydrogen Tunneling with Nuclear-Electronic Orbital Multistate Density Functional Theory. Yu Q; Roy S; Hammes-Schiffer S J Chem Theory Comput; 2022 Dec; 18(12):7132-7141. PubMed ID: 36378867 [TBL] [Abstract][Full Text] [Related]
16. Molecular Vibrational Frequencies with Multiple Quantum Protons within the Nuclear-Electronic Orbital Framework. Culpitt T; Yang Y; Schneider PE; Pavošević F; Hammes-Schiffer S J Chem Theory Comput; 2019 Dec; 15(12):6840-6849. PubMed ID: 31618582 [TBL] [Abstract][Full Text] [Related]
17. Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects. Xu X; Yang Y J Chem Phys; 2020 Feb; 152(8):084107. PubMed ID: 32113355 [TBL] [Abstract][Full Text] [Related]
18. Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals. Nykänen A; Miller A; Talarico W; Knecht S; Kovyrshin A; Skogh M; Tornberg L; Broo A; Mensa S; Symons BCB; Sahin E; Crain J; Tavernelli I; Pavošević F J Chem Theory Comput; 2023 Dec; 19(24):9269-9277. PubMed ID: 38081802 [TBL] [Abstract][Full Text] [Related]
19. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. Xu J; Zhou R; Blum V; Li TE; Hammes-Schiffer S; Kanai Y Phys Rev Lett; 2023 Dec; 131(23):238002. PubMed ID: 38134781 [TBL] [Abstract][Full Text] [Related]
20. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics. Schaupp T; Engel V Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]