These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36948815)

  • 1. Solving the Wigner equation for chemically relevant scenarios: Dynamics in 2D.
    Wang Y; Simine L
    J Chem Phys; 2023 Mar; 158(11):114111. PubMed ID: 36948815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the Wigner equation with signed particle Monte Carlo for chemically relevant potentials.
    Wang Y; Simine L
    J Chem Phys; 2021 Jul; 155(3):034109. PubMed ID: 34293875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation.
    Koda S
    J Chem Phys; 2015 Dec; 143(24):244110. PubMed ID: 26723654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A variational principle in Wigner phase-space with applications to statistical mechanics.
    Poulsen JA
    J Chem Phys; 2011 Jan; 134(3):034118. PubMed ID: 21261341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiclassical propagation of Wigner functions.
    Dittrich T; Gómez EA; Pachón LA
    J Chem Phys; 2010 Jun; 132(21):214102. PubMed ID: 20528013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wigner phase space distribution via classical adiabatic switching.
    Bose A; Makri N
    J Chem Phys; 2015 Sep; 143(11):114114. PubMed ID: 26395694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent State-Based Path Integral Methodology for Computing the Wigner Phase Space Distribution.
    Bose A; Makri N
    J Phys Chem A; 2019 May; 123(19):4284-4294. PubMed ID: 30986061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum tunneling using entangled classical trajectories.
    Donoso A; Martens CC
    Phys Rev Lett; 2001 Nov; 87(22):223202. PubMed ID: 11736399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Wigner equation.
    Solórzano S; Mendoza M; Succi S; Herrmann HJ
    Phys Rev E; 2018 Jan; 97(1-1):013308. PubMed ID: 29448404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-space methods for the spin dynamics in condensed matter systems.
    Hurst J; Hervieux PA; Manfredi G
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2092):. PubMed ID: 28320903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes.
    Dorda A; Schürrer F
    J Comput Phys; 2015 Mar; 284():95-116. PubMed ID: 25892748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the phase-space catastrophes in dynamics of the quantum particle in an optical lattice potential.
    Ćosić M; Petrović S; Bellucci S
    Chaos; 2020 Oct; 30(10):103107. PubMed ID: 33138471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning phase space quantum dynamics approaches.
    Liu X; Zhang L; Liu J
    J Chem Phys; 2021 May; 154(18):184104. PubMed ID: 34241027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational approach for investigating Coulomb interaction using Wigner-Poisson coupling.
    Benam M; Ballicchia M; Weinbub J; Selberherr S; Nedjalkov M
    J Comput Electron; 2021; 20(2):775-784. PubMed ID: 34720780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing long time scale biomolecular dynamics using quasi-stationary distribution kinetic Monte Carlo (QSD-KMC).
    Agarwal A; Hengartner NW; Gnanakaran S; Voter AF
    J Chem Phys; 2019 Aug; 151(7):074109. PubMed ID: 31438708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged-particle-beam propagator in wave-electron optics: phase-space and tomographic pictures.
    Fedele R; Man'ko MA; Man'ko VI
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2506-12. PubMed ID: 11140510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.
    Sels D; Brosens F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042101. PubMed ID: 24229110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.