These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36948834)

  • 1. Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis.
    Weatherspoon H; Peters B
    J Chem Phys; 2023 Mar; 158(11):114306. PubMed ID: 36948834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous nucleation with magic numbers: aluminum.
    Girshick SL; Agarwal P; Truhlar DG
    J Chem Phys; 2009 Oct; 131(13):134305. PubMed ID: 19814551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals.
    Mule AS; Mazzotti S; Rossinelli AA; Aellen M; Prins PT; van der Bok JC; Solari SF; Glauser YM; Kumar PV; Riedinger A; Norris DJ
    J Am Chem Soc; 2021 Feb; 143(4):2037-2048. PubMed ID: 33470810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold tetrahedra coil up: Kekulé-like and double helical superstructures.
    Zeng C; Chen Y; Liu C; Nobusada K; Rosi NL; Jin R
    Sci Adv; 2015 Oct; 1(9):e1500425. PubMed ID: 26601286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy and the Tolman Parameter in Nucleation Theory.
    Schmelzer JWP; Abyzov AS; Baidakov VG
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Future of Colloidal Semiconductor Magic-Size Clusters.
    Palencia C; Yu K; Boldt K
    ACS Nano; 2020 Feb; 14(2):1227-1235. PubMed ID: 32003556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2014 Feb; 140(7):074303. PubMed ID: 24559349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous nucleation of carbon dioxide in supersonic nozzles II: molecular dynamics simulations and properties of nucleating clusters.
    Halonen R; Tikkanen V; Reischl B; Dingilian KK; Wyslouzil BE; Vehkamäki H
    Phys Chem Chem Phys; 2021 Feb; 23(8):4517-4529. PubMed ID: 33595558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free Energy Landscape of Colloidal Clusters in Spherical Confinement.
    Wang J; Mbah CF; Przybilla T; Englisch S; Spiecker E; Engel M; Vogel N
    ACS Nano; 2019 Aug; 13(8):9005-9015. PubMed ID: 31274291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and structures of the initial stages of nucleation of (SiO(2))(N) species: possible routes to highly symmetrical tetrahedral clusters.
    Bromley ST; Illas F
    Phys Chem Chem Phys; 2007 Mar; 9(9):1078-86. PubMed ID: 17311150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of fcc tetrahedral subunits in the phase behavior of medium sized Lennard-Jones clusters.
    Saika-Voivod I; Poon L; Bowles RK
    J Chem Phys; 2010 Aug; 133(7):074503. PubMed ID: 20726648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of epitaxial calcite nucleation on self-assembled monolayers.
    Travaille AM; Steijven EG; Meekes H; van Kempen H
    J Phys Chem B; 2005 Mar; 109(12):5618-26. PubMed ID: 16851605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods.
    Espinosa JR; Vega C; Valeriani C; Sanz E
    J Chem Phys; 2015 May; 142(19):194709. PubMed ID: 26001475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing stable geometries and magic clusters of hexagonal boron nitride in the nucleation of chemical vapor deposition growth on Ni(111)/Cu(111) surfaces: a theoretical study.
    Zhu H; Zhao X; Li H; Zhao R
    Phys Chem Chem Phys; 2020 Feb; 22(7):4023-4031. PubMed ID: 32022041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen nucleation in a cryogenic supersonic nozzle.
    Bhabhe A; Wyslouzil B
    J Chem Phys; 2011 Dec; 135(24):244311. PubMed ID: 22225160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of prenucleation clusters in lattice solutions.
    Legg BA; De Yoreo JJ
    J Chem Phys; 2016 Dec; 145(21):211921. PubMed ID: 28799379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.