These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36949338)

  • 1. Quantum-enabled millimetre wave to optical transduction using neutral atoms.
    Kumar A; Suleymanzade A; Stone M; Taneja L; Anferov A; Schuster DI; Simon J
    Nature; 2023 Mar; 615(7953):614-619. PubMed ID: 36949338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating heralded hyper-entangled photons using Rydberg atoms.
    Ghosh S; Rivera N; Eisenstein G; Kaminer I
    Light Sci Appl; 2021 May; 10(1):100. PubMed ID: 33976109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.
    Verdú J; Zoubi H; Koller Ch; Majer J; Ritsch H; Schmiedmayer J
    Phys Rev Lett; 2009 Jul; 103(4):043603. PubMed ID: 19659351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconducting-qubit readout via low-backaction electro-optic transduction.
    Delaney RD; Urmey MD; Mittal S; Brubaker BM; Kindem JM; Burns PS; Regal CA; Lehnert KW
    Nature; 2022 Jun; 606(7914):489-493. PubMed ID: 35705821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
    Shanks WE; Underwood DL; Houck AA
    Nat Commun; 2013; 4():1991. PubMed ID: 23744062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs.
    Zhong C; Wang Z; Zou C; Zhang M; Han X; Fu W; Xu M; Shankar S; Devoret MH; Tang HX; Jiang L
    Phys Rev Lett; 2020 Jan; 124(1):010511. PubMed ID: 31976686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microwave-to-optics interface for scalable quantum computing.
    Weaver MJ; Duivestein P; Bernasconi AC; Scharmer S; Lemang M; Thiel TCV; Hijazi F; Hensen B; Gröblacher S; Stockill R
    Nat Nanotechnol; 2024 Feb; 19(2):166-172. PubMed ID: 37798565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action.
    Qiu L; Sahu R; Hease W; Arnold G; Fink JM
    Nat Commun; 2023 Jun; 14(1):3784. PubMed ID: 37355691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms.
    Scholl P; Schuler M; Williams HJ; Eberharter AA; Barredo D; Schymik KN; Lienhard V; Henry LP; Lang TC; Lahaye T; Läuchli AM; Browaeys A
    Nature; 2021 Jul; 595(7866):233-238. PubMed ID: 34234335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting qubit to optical photon transduction.
    Mirhosseini M; Sipahigil A; Kalaee M; Painter O
    Nature; 2020 Dec; 588(7839):599-603. PubMed ID: 33361793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
    Pirkkalainen JM; Cho SU; Li J; Paraoanu GS; Hakonen PJ; Sillanpää MA
    Nature; 2013 Feb; 494(7436):211-5. PubMed ID: 23407536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity.
    Greve GP; Luo C; Wu B; Thompson JK
    Nature; 2022 Oct; 610(7932):472-477. PubMed ID: 36261551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entangling two transportable neutral atoms via local spin exchange.
    Kaufman AM; Lester BJ; Foss-Feig M; Wall ML; Rey AM; Regal CA
    Nature; 2015 Nov; 527(7577):208-11. PubMed ID: 26524533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip.
    Bernon S; Hattermann H; Bothner D; Knufinke M; Weiss P; Jessen F; Cano D; Kemmler M; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2013; 4():2380. PubMed ID: 23986123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.